Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference
  • OSA Technical Digest (Optica Publishing Group, 2019),
  • paper ef_9_4

Optical self-localization based upon the Pancharatnam-Berry phase

Not Accessible

Your library or personal account may give you access

Abstract

The self-focusing effect is associated with a change in the refractive index proportional to the field intensity, in turn inducing a power-dependent manipulation of the wave front [1]. In long enough samples and for the proper input conditions, self-focusing can compensate the natural spreading due to diffraction, thus generating a shape-preserving nonlinear wave called spatial soliton [1]. On the other hand, in the last few years much attention has been dedicated to the tailoring of optical beams by means of the Pancharatnam-Berry phase (PBP). Whereas a gradient in the refractive index can be associated with a dynamic phase, PBP is a geometric phase, that is, it depends on the geometrical path made by the system in the parameter space [2]. In the case of the PBP, the phase delay comes from the motion of the polarization vector on the Poincaré sphere [3]. In practice, a twisted anisotropic material encompassing a point-wise rotation angle φ impart a phase modulation on the crossing beam equal to 2φ. Despite this property being widely used to realize flat optical devices, much less works have been dedicated to the investigation of the PBP influence on light propagation over bulk samples. Recently, it has been demonstrated that a periodic modulation of the optical axis along the propagation direction induces a novel type of waveguide [4]. Nonetheless, the technological realization of a twisted anisotropic material in 3D is currently prohibitive. Here we show that such kind of waveguides are generated spontaneously in liquid crystals by means of the reorientational nonlinearity, that is, the rotation of the optical axis driven by the impinging light.

© 2019 IEEE

PDF Article
More Like This
Optical dispersion in waveguides based upon the Pancharatnam-Berry phase

Stree Vithya Arumugam, Chandroth P. Jisha, Alessandro Alberucci, and Stefan Nolte
ec_p_7 European Quantum Electronics Conference (EQEC) 2023

Properties of Waveguides Based Upon the Pancharatnam-Berry Phase

Stree Vithya Arumugam, Chandroth P. Jisha, Alessandro Alberucci, and Stefan Nolte
JTu4A.25 Frontiers in Optics (FiO) 2022

Self-trapping of light via the Pancharatnam-Berry phase

Chandroth P. Jisha, Alessandro Alberucci, and Stefan Nolte
FW5C.3 Frontiers in Optics (FiO) 2018

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.