Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference
  • OSA Technical Digest (Optica Publishing Group, 2019),
  • paper eg_p_17

Ultrafast two-dimensional electronic spectroscopy of millimeter-sized halide perovskite single crystals

Not Accessible

Your library or personal account may give you access

Abstract

Halide perovskites (HaPs) have rapidly grown as highly promising photovoltaic materials. Despite the impressive device efficiencies, however, the fundamental mechanisms governing their unusual optoelectronic properties are still unclear [1]. In particular, the nature of their elementary optical excitations, their dynamics and interactions on ultrafast timescales are currently debated. Due to the comparatively low exciton binding energy, typically < 50 meV[2], the near-bandgap absorption in HaPs is a mixture of excitons and free carrier transitions. This makes it challenging to distinguish the contributions of these two species to the nonlinear optical spectra in experiments, in particular at room temperature.

© 2019 IEEE

PDF Article
More Like This
Probing electron-phonon couplings in halide perovskites crystals by temperature-dependent ultrafast two-dimensional electronic spectroscopy

Xuan Trung Nguyen, Daniel Timmer, Yevgeny Rakita, David Cahen, Alexander Steinhoff, Frank Jahnke, Christoph Lienau, and Antonietta De Sio
M3A.1 International Conference on Ultrafast Phenomena (UP) 2020

Ultrafast Two-dimensional Electronic Spectroscopy reveals Phonon-driven Exciton Rabi oscillations in Halide Perovskites

Xuan Trung Nguyen, Katrin Winte, Daniel Timmer, Yevgeny Rakita, David Cahen, Michael Lorke, Frank Jahnke, Christoph Lienau, and Antonietta De Sio
Th3A.3 International Conference on Ultrafast Phenomena (UP) 2022

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.