Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

On the Emission and Absorption of Thermal Radiation in Photonic Crystals

Not Accessible

Your library or personal account may give you access

Abstract

We investigate the general features of thermal emission and absorption of radiation in photonic crystals. The light-matter interaction is strongly affected by the presence of the three-dimensional photonic crystal and the alteration of the photonic density of states can be used to suppress or enhance the thermal emissivity and absorptivity of the dielectric structure. Our analysis shows that the thermal response of the system depends on both the elementary absorbers/emitters and the photonic reservoir characteristics. In particular, we demonstrate that, depending on the system configuration, the thermal emission may exceed the free-space radiative energy density given by Planck's law. This modification of the Planck's law is achieved without altering the optical properties of the absorber/emitter medium, which remain consistent with the usual definition of a frequency and angle dependent grey-body. We also evaluate the rate of spontaneous emission, stimulated emission and absorption for thermally driven two-level atomic systems in a photonic crystal, and introduce effective A and B coefficients for the case of a photonic crystal.

© 2005 Optical Society of America

PDF Article
More Like This
Thermal emission and absorption of radiation in inverted opal photonic crystals

Marian Florescu, Hwang Lee, and Jonathan Dowling
FWB4 Frontiers in Optics (FiO) 2004

Simple Model of Spontaneous Emission in 1D Photonic Crystal

Adam Rudziński, Anna Tyszka-Zawadzka, and Pawet Szczepański
JWA69 Frontiers in Optics (FiO) 2005

Absorption-Based Ranging from Ambient Thermal Radiation without Known Emissivities

Unay Dorken Gallastegi, Hoover Rueda-Chacon, Martin J. Stevens, and Vivek K Goyal
STh5J.3 CLEO: Science and Innovations (CLEO:S&I) 2022

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved