Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Frontiers in Optics 2008/Laser Science XXIV/Plasmonics and Metamaterials/Optical Fabrication and Testing
  • OSA Technical Digest (CD) (Optica Publishing Group, 2008),
  • paper FWU2
  • https://doi.org/10.1364/FIO.2008.FWU2

Integration of the Two-Dimensional Power Spectral Density into Specifications for the X-ray Domain—Problems and Opportunities

Not Accessible

Your library or personal account may give you access

Abstract

Implementation of the two-dimensional statistical scattering theory of Church and Takacs for the prediction of scattering from x-ray mirrors is presented. This development has clarified several problems which are of significant interest to the synchrotron community. These problems have been addressed to some extent, for example, for large astronomical telescopes, and at the National Ignition Facility for normal incidence optics, but not in the synchrotron community for grazing incidence optics. Since it is based on the Power Spectral Density (PSD) to provide a description of the deviations from ideal shape of the surface, accurate prediction of the scattering requires an accurate estimation of the PSD. Specifically, the spatial frequency range of measurement must be the correct one for the geometry of use of the optic—including grazing incidence and coherence effects, and the modifications to the PSD of the Optical Transfer Functions (OTF) of the measuring instruments must be removed. A solution for removal of OTF effects has been presented previously, the Binary PseudoRandom Grating. Typically, the frequency range of a single instrument does not cover the range of interest, requiring the stitching together of PSD estimations. This combination generates its own set of difficulties in two dimensions. Fitting smooth functions to two dimensional PSDs, particularly in the case of spatial non-isotropy of the surface, which is often the case for optics in synchrotron beam lines, can be difficult. The convenient, and physically accurate fractal for one dimension does not readily transfer to two dimensions. Finally, a completely statistical description of scattering must be integrated with a deterministic low spatial frequency component in order to completely model the intensity near the image. An outline for approaching these problems, and our proposed experimental program is given.

© 2008 Optical Society of America

PDF Article
More Like This
Characterization of large aperture optical wavefronts using the Power Spectral Density function

C.R. Wolfe and J.K. Lawson
OWB.2 Optical Fabrication and Testing (OF&T) 1996

Scattering Analysis Problems from Visible to X-ray

Paul Glenn
WA3 Space Optics for Astrophysics and Earth and Planetary Remote Sensing (SO) 1988

Surface Roughness and X-Ray Scattering

E.L. Church and P.Z. Takacs
TuC1 Physics of X-Ray Multilayer Structures (PXRAYMS) 1992

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.