Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Dual-wavelength dispersion characterization of confocal Fabry–Perot interferometers

Not Accessible

Your library or personal account may give you access

Abstract

Optical resonators simultaneously resonating at different wavelengths are of interest in passive as well as active optical cavities. Dual-wavelength lasers, optical parametric amplifiers and spectrometers, e.g., in high spectral resolution lidar (HSRL) are effectively improved by employing multiply resonant cavities. In particular, HSRL allows us to measure aerosol optical properties without a priori hypotheses. Here we analyze optical dispersion in a HSRL prototype, based on a confocal Fabry–Perot interferometer (CFPI), developed to work at 532 nm (the lidar excitation wavelength). The presence of dispersion should be accounted for when realizing an effective HSRL because a second beam is required to obtain sufficient locking stability. We have performed an experiment in order to measure the dispersion contributions coming from cavity mirror coating and air and evaluate the stability of the transmission peaks in order to optimize the performances of HSRL.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Development of a high spectral resolution lidar based on confocal Fabry–Perot spectral filters

David S. Hoffman, Kevin S. Repasky, John A. Reagan, and John L. Carlsten
Appl. Opt. 51(25) 6233-6244 (2012)

Demonstration of aerosol profile measurement with a dual-wavelength high-spectral-resolution lidar using a scanning interferometer

Yoshitaka Jin, Tomoaki Nishizawa, Nobuo Sugimoto, Satoru Takakura, Makoto Aoki, Shoken Ishii, Akihiro Yamazaki, Rei Kudo, Keiya Yumimoto, Kaori Sato, and Hajime Okamoto
Appl. Opt. 61(13) 3523-3532 (2022)

Calibration of a high spectral resolution lidar using a Michelson interferometer, with data examples from ORACLES

S. P. Burton, C. A. Hostetler, A. L. Cook, J. W. Hair, S. T. Seaman, S. Scola, D. B. Harper, J. A. Smith, M. A. Fenn, R. A. Ferrare, P. E. Saide, E. V. Chemyakin, and D. Müller
Appl. Opt. 57(21) 6061-6075 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved