Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Gain investigation of Perylene-Red-doped PMMA for stimulated luminescent solar concentrators

Not Accessible

Your library or personal account may give you access

Abstract

Luminescent solar concentrators (LSCs) utilizing stimulated emission by a seed laser are a promising approach to overcome the limitations of conventional LSCs, with a significant reduction of the photovoltaic material. In our previous work, we demonstrated the principle of a stimulated LSC (s-LSC) and correspondingly developed a model for quantifying the output power of such a system, taking into account different important physical parameters. The model suggested Perylene Red (PR) dye as a potential candidate for s-LSCs. Here, we experimentally investigate the gain of PR-doped polymethyl methacrylate (PMMA) required for s-LSCs using a single pump wavelength (instead of the solar spectrum) as a proof of principle. The results found from the experiment are well matched with the previously developed numerical model except for gain saturation, which occurs at a comparatively small seed laser signal power. To investigate the gain saturation, two approaches were taken: investigating (i) spectral hole burning and (ii) triplet state absorption. Experimental investigation of spectral hole burning with PR dyes showed a small effect on the gain saturation. We developed a general state model considering triplet state absorption of the PR dyes for the second approach. The state model suggests that the PR dyes suffer from significant triplet state absorption loss, which obstructs the normal operation of the PR-based s-LSC system.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Modeling of stimulated emission based luminescent solar concentrators

MD Rejvi Kaysir, Simon Fleming, and Alexander Argyros
Opt. Express 24(26) A1546-A1559 (2016)

Optical gain characterization of Perylene Red-doped PMMA for different pump configurations

Md Rejvi Kaysir, Simon Fleming, Rowan W. MacQueen, Timothy W. Schmidt, and Alexander Argyros
Appl. Opt. 55(1) 178-183 (2016)

Luminescent solar concentrators utilizing stimulated emission

MD Rejvi Kaysir, Simon Fleming, Rowan W. MacQueen, Timothy W. Schmidt, and Alexander Argyros
Opt. Express 24(6) A497-A505 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved