Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

A compact high-precision periodic-error-free heterodyne interferometer

Abstract

We present the design, bench-top setup, and experimental results of a compact heterodyne interferometer that achieves picometer-level displacement sensitivities in air over frequencies above 100 MHz. The optical configuration with spatially separated beams prevents frequency and polarization mixing, and therefore eliminates periodic errors. The interferometer is designed to maximize common-mode optical laser beam paths to obtain high rejection of environmental disturbances, such as temperature fluctuations and acoustics. The results of our experiments demonstrate the short- and long-term stabilities of the system during stationary and dynamic measurements. In addition, we provide measurements that compare our interferometer prototype with a commercial system, verifying our higher sensitivity of 3 pm, higher thermal stability by a factor of two, and periodic-error-free performance.

© 2020 Optical Society of America

Full Article  |  PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved