Abstract

A technique is introduced that determines power distribution in fibers from the measured near-field pattern, assuming that: (1) the optical power distributes uniformly among degenerated modes with the same propagation constant, (2) enough modes are excited to ensure the validity of calculation by geometrical optics, and (3) the phase of each propagation mode has no correlation. Experiments verifed that the fibers have the function of flattening power distribution among modes with the same propagation constant. This fact shows that assumption (1) does not severely limit the applicability of the technique. Wave optical calculation is done to determine the numbers of modes that must be excited to satisfy assumption (2). As an example of application of the technique, differential mode attenuation of graded-index fibers is determined from longitudinal variation of the measured near-field pattern.

© 1979 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Near-field intensity pattern at the output of silica-based graded-index multimode fibers under selective excitation with a single-mode fiber

C. P. Tsekrekos, R. W. Smink, B. P. de Hon, A. G. Tijhuis, and A. M. J. Koonen
Opt. Express 15(7) 3656-3664 (2007)

Interlaboratory measurement comparison to determine the attenuation and bandwidth of graded-index optical fibers

Douglas L. Franzen, G. W. Day, Bruce L. Danielson, George E. Chamberlain, and Ernest M. Kim
Appl. Opt. 20(14) 2412-2419 (1981)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (42)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription