Abstract

Experiments involving He–Cd and Ar laser beam interactions with an Ar discharge indicate that space charge effects generated by the incident light itself are the physical mechanism responsible for nonlinearity of response in discharge regions of excited atom concentration spatial gradients. This occurs with both excited atom photoionization and optogalvanic signals. Such optically generated space charges explain the role of electrode geometry in forming effective cross sections which have been used to describe mathematically the nonlinearity. The optogalvanic effect here is greater in Townsend than in glow discharges, particularly in the cathode fall. This is advantageous because of the extremely low noise and higher responsivities of Townsend discharges.

© 1979 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photoionization of excited atoms by low intensity light: experimental test of the effective cross section

N. S. Kopeika and A. P. Kushelevsky
Appl. Opt. 17(24) 3933-3937 (1978)

Improved detection of ultraviolet radiation with gas-filled phototubes through photoionization of excited atoms

N. S. Kopeika, R. Gellman, and A. P. Kushelevsky
Appl. Opt. 16(9) 2470-2476 (1977)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription