Abstract

On the basis of a modified version of the lowtran 6 model, an absolute comparison is made of typical and background-limited IR sensors operating in the 3–5-μm and 8–12-μm wavebands in a tropical maritime environment. Allowance is made for slant paths and a variety of targets and backgrounds including hot targets and backgrounds spectrally different from the targets. It is found that with current detector technology the 8–12-μm waveband is superior for all except very hot targets at long ranges. The validity of various approximations is also investigated, and in particular it is found that the blackbody composite background approximation should not be used for slant paths.

© 1989 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Infrared continuum absorption by atmospheric water vapor in the 8–12-μm window

Robert E. Roberts, John E. A. Selby, and Lucien M. Biberman
Appl. Opt. 15(9) 2085-2090 (1976)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription