Abstract

The fine-scale thermal blooming instability of a high power trans-atmospheric laser beam is shown to be affected by the laser pulse length. In this study, we calculate the asymptotic gain of a sinusoidal perturbation as a function of pulse length and perturbation wavenumber. We include the effects of viscosity, diffusion, and wind shear, and we heuristically estimate the effect of turbulence. We find that for short laser pulses, the small wavenumber perturbations are reduced due to acoustic effects. However, large wavenumber perturbations remain large and extend to a higher cutoff in wavenumber than in the long laser pulse limit. At wavenumbers higher than this cutoff, thermal diffusion causes exponential decay of the perturbations. For long laser pulse length wind shear and turbulence limit perturbation growth.

© 1989 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Perturbation growth by thermal blooming in turbulence

T. J. Karr, J. R. Morris, D. H. Chambers, J. A. Viecelli, and P. G. Cramer
J. Opt. Soc. Am. B 7(6) 1103-1124 (1990)

Linear analysis of thermal blooming compensation instabilities in laser propagation

Jeffrey D. Barchers
J. Opt. Soc. Am. A 26(7) 1638-1653 (2009)

Perturbative approach to the small-scale physics of the interaction of thermal blooming and turbulence

S. Enguehard and B. Hatfield
J. Opt. Soc. Am. A 8(4) 637-646 (1991)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (68)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription