Abstract

We consider an approximate solution to the wave equation appropriate to the optical waveguides encountered in practice. The refractive-index profile may be arbitrary, and the geometry may be two or three dimensional. A circular or a planar waveguide could thus be treated by this method. The technique is more accurate and more useful than the WKB method, which is often used in problems of this type, because the technique is valid even at the turning points, where the WKB solution fails. The fields and the propagation constants of the lowest-order modes for two profiles are calculated, and they compare well with the exact solutions. The solutions that we proposed are, in fact, not new. However, insofar as we know, they are unknown and unused by the optics community.

© 1991 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Approximate solutions to the scalar wave equation: the decomposition method

Vasudevan Lakshminarayanan and Srinivasa Varadharajan
J. Opt. Soc. Am. A 15(5) 1394-1400 (1998)

Photon-density modes beyond the diffusion approximation: scalar wave-diffusion equation

A. Ya. Polishchuk, S. Gutman, M. Lax, and R. R. Alfano
J. Opt. Soc. Am. A 14(1) 230-234 (1997)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (37)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription