Abstract

We introduce a new design concept of laser radar systems that combines both phase comparison and time-of-flight methods. We show from signal-to-noise ratio considerations that there is a fundamental limit to the overall resolution in three-dimensional imaging range laser radar (ladar). We introduce a new metric, volume of resolution, and we show from quantum noise considerations that there is a maximum resolution volume that can be achieved for a given set of system parameters. Consequently, there is a direct trade-off between range resolution and spatial resolution. Thus, in a ladar system, range resolution may be maximized at the expense of spatial image resolution and vice versa. We introduce resolution efficiency ηr as a new figure of merit for ladar that describes system resolution under the constraints of a specific design, compared with its optimal resolution performance derived from quantum noise considerations. We analyze how the resolution efficiency could be utilized to improve the resolution performance of a ladar system. Our analysis could be extended to all ladars, regardless of whether they are imaging or scanning laser systems.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
LADAR resolution improvement using receivers enhanced with squeezed-vacuum injection and phase-sensitive amplification

Zachary Dutton, Jeffrey H. Shapiro, and Saikat Guha
J. Opt. Soc. Am. B 27(6) A63-A72 (2010)

Computational LADAR imaging

Arthita Ghosh, Michael A. Powers, and Vishal M. Patel
Appl. Opt. 56(3) B191-B197 (2017)

Spectral LADAR: active range-resolved three-dimensional imaging spectroscopy

Michael A. Powers and Christopher C. Davis
Appl. Opt. 51(10) 1468-1478 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (34)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription