Abstract

Wide bandgap metal fluorides are the materials of choice for optical coating applications at 193nm. Low loss and environmentally stable optics requires a mitigating fluoride film structure on a nanometer scale. To understand the growth mechanism of fluoride materials, GdF3 films grown on CaF2 (111) and SiO2 substrates were investigated. Film inhomogeneity and surface roughness were modeled by fitting ellipsometric data with an effective medium approximation, indicating a correlation between film inhomogeneity and surface roughness. The modeled surface roughness was compared with the atomic force microscope measurement. Film inhomogeneity was correlated to the cone-shaped columnar structure revealed by cross-sectional images from a scanning electron microscope. The film crystalline structure was determined by x-ray diffraction measurement, suggesting a different growth mechanism of GdF3 films on crystalline and amorphous substrates.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanoporous structure of a GdF3 thin film evaluated by variable angle spectroscopic ellipsometry

Jue Wang, Robert Maier, Paul G. Dewa, Horst Schreiber, Robert A. Bellman, and David Dawson Elli
Appl. Opt. 46(16) 3221-3226 (2007)

Crystal phase transition of HfO2 films evaporated by plasma-ion-assisted deposition

Jue Wang, Robert L. Maier, and Horst Schreiber
Appl. Opt. 47(13) C189-C192 (2008)

Microstructure-related properties at 193 nm of MgF2 and GdF3 films deposited by a resistive-heating boat

Ming-Chung Liu, Cheng-Chung Lee, Masaaki Kaneko, Kazuhide Nakahira, and Yuuichi Takano
Appl. Opt. 45(7) 1368-1374 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription