Abstract

Existing methods for determining caustic surfaces involve computing either the flux density singularity or the center of curvature of the wavefront. However, such methods rely rather heavily on ray tracing and finite difference methods for estimating the first- and second-order derivative matrices (i.e., Jacobian and Hessian matrices) of a ray. The main reason is that previously the analytical expressions of these two matrices have been tedious or even impossible. Accordingly, the present study proposes a robust numerical method for determining caustic surfaces based on a point spread function and the established analytical Jacobian and Hessian matrices of a ray by our group. It is shown that the proposed method provides a convenient and computationally straightforward means of determining the caustic surfaces of both simple and complex optical systems without the need for analytical equations, and is substantially different from the two existing methods.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Second-order derivatives of optical path length of ray with respect to variable vector of source ray

Yu-Bin Chen and Psang Dain Lin
Appl. Opt. 51(22) 5552-5562 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription