Abstract

We propose a precise rolling angle measurement for a collimator to extend its application in 3D angular deformation measurement, with performance significantly superior to that of the traditional 2D technique. The rolling angle measurement is realized by taking full advantage of the point array image, which is projected in terms of the collimated beam. The measurement error is estimated according to the proposed algorithm. The characteristics of the point array are analyzed to optimize the point array for precise measurement, including the point distribution, the point array resolution, and the point array area. Both simulations and experiments demonstrate that subarcsecond precision rolling angle measurement is achieved by our method, which is superior to those attained by other proposed targets.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-precision rotation angle measurement method based on monocular vision

Jing Jin, Lingna Zhao, and Shengli Xu
J. Opt. Soc. Am. A 31(7) 1401-1407 (2014)

High-precision rotation angle measurement method based on a lensless digital holographic microscope

Yumin Wu, Haobo Cheng, and Yongfu Wen
Appl. Opt. 57(1) 112-118 (2018)

Design, fabrication, and verification of a three-dimensional autocollimator

Yanhe Yin, Sheng Cai, and Yanfeng Qiao
Appl. Opt. 55(35) 9986-9991 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription