Abstract

In this study, we theoretically investigate the near-infrared (NIR) photonic band structure (PBS) in a one-dimensional semiconductor metamaterial (MM) photonic crystal (PC). The considered PC is (AB)N, where N is the stack number, A is a dielectric, and B is a semiconductor MM composed of Al-doped ZnO and ZnO. It is found that the photonic band gaps (PBGs) can be tunable by the variations in filling factor, and thicknesses of A and B. It is of particular interest to see that the PBG will vanish when the thicknesses of A and B satisfy a certain condition. The results provide fundamental information on a NIR PBS that could be of technical use in photonic applications using such a semiconductor MM. The band gap vanishing makes it possible to design a wider band pass filter at NIR based on the use of such a PC.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of photonic bandgap structure for a polaritonic photonic crystal in negative-index region

Meng-Ru Wu, Hui-Chuan Hung, Chien-Jang Wu, and Shoou-Jinn Chang
J. Opt. Soc. Am. B 31(7) 1730-1734 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription