Abstract

An uncooled photon detector is fabricated for the mid-wave infrared (MWIR) wavelength of 4.21 μm by doping an n-type 4H-SiC substrate with gallium using a laser doping technique. The dopant creates a p-type energy level of 0.3 eV, which is the energy of a photon corresponding to the MWIR wavelength 4.21 μm. This energy level was confirmed by optical absorption spectroscopy. The detection mechanism involves photoexcitation of carriers by the photons of this wavelength absorbed in the semiconductor. The resulting changes in the carrier densities at different energy levels modify the refractive index and, therefore, the reflectance of the semiconductor. This change in the reflectance constitutes the optical response of the detector, which can be probed remotely with a laser beam such as a He–Ne laser and the power of the reflected probe beam can be measured with a conventional laser power meter. The noise mechanisms in the probe laser, silicon carbide MWIR detector, and laser power meter affect the performance of the detector in regards to aspects such as the responsivity, noise equivalent temperature difference (NETD), and detectivity. For the MWIR wavelengths of 4.21 and 4.63 μm, the experimental detectivity of the optical photodetector of this study was found to be 1.07×1010cm·Hz1/2/W, while the theoretical value was 1.11×1010cm·Hz1/2/W. The values of NETD are 404 and 15.5 mK based on experimental data for an MWIR radiation source with a temperature of 25°C and theoretical calculations, respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical response of laser-doped silicon carbide for an uncooled midwave infrared detector

Geunsik Lim, Tariq Manzur, and Aravinda Kar
Appl. Opt. 50(17) 2640-2653 (2011)

Indium antimonide uncooled photodetector with dual band photoresponse in the infrared and millimeter wave range

Jinchao Tong, Fei Suo, Wei Zhou, Yue Qu, Niangjuan Yao, Tao Hu, Zhiming Huang, and Dao Hua Zhang
Opt. Express 27(21) 30763-30772 (2019)

Laser optical gas sensor by photoexcitation effect on refractive index

Geunsik Lim, Upul P. DeSilva, Nathaniel R. Quick, and Aravinda Kar
Appl. Opt. 49(9) 1563-1573 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription