Abstract

Systems for infrared reflectance imaging are built with an FT-IR spectrometer, hollow optical fibers, and a high-speed infrared camera. To obtain reflectance images of biological samples, an optical fiber probe equipped with a light source at the distal end and a hybrid fiber probe composed of fibers for beam radiation and ones for image detection have been developed. By using these systems, reflectance spectral images of lipid painted on biomedical hard tissue, which provides reflectance of around 4%, are successfully acquired.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Remote Fourier transform-infrared spectral imaging system with hollow-optical fiber bundle

Chenhui Huang, Saiko Kino, Takashi Katagiri, and Yuji Matsuura
Appl. Opt. 51(29) 6913-6916 (2012)

All-optical photoacoustic imaging system using fiber ultrasound probe and hollow optical fiber bundle

Yusuke Miida and Yuji Matsuura
Opt. Express 21(19) 22023-22033 (2013)

Multi-element hollow-core anti-resonant fiber for infrared thermal imaging

Takuya Kobayashi, Takashi Katagiri, and Yuji Matsuura
Opt. Express 24(23) 26565-26574 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Z. Movasaghi, S. Rehman, and I. Rehman, “Fourier transform infrared (FTIR) spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 43, 134–179 (2008).
    [Crossref]
  2. S. Argov, J. Ramesh, A. Salman, I. Sinelnikov, J. Goldstein, H. Guterman, and S. Mordechai, “Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients,” J. Biomed. Opt. 7, 248–254 (2002).
    [Crossref]
  3. P. Wong, R. Wong, T. Caputo, T. Godwin, and B. Rigas, “Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis,” Proc. Natl. Acad. Sci. USA 88, 10988–10992 (1991).
  4. D. Maziak, M. Do, F. Shamji, S. Sundaresan, D. Perkins, and P. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer detection and prevention 31, 244–253 (2007).
  5. R. Sahu and S. Mordechai, “Fourier transform infrared spectroscopy in cancer detection,” Future Oncol. 1, 635–647 (2005).
  6. S. Kazarian and K. Chan, “Applications of ATR-FTIR spectroscopic imaging to biomedical samples,” Biochim. Biophys. Acta 1758, 858–867 (2006).
    [Crossref]
  7. X. Bi, G. Li, S. Doty, and N. Camacho, “A novel method for determination of collagen orientation in cartilage by Fourier transform infrared imaging spectroscopy (FT-IRIS),” Osetoarthritis Cartilage 13, 1050–1058 (2005).
  8. C. Johnson, N. Pleshko, M. Achary, and R. Suri, “Rapid and sensitive screening of 17β-estradiol estrogenicity using Fourier transform infrared imaging spectroscopy (FT-IRIS),” Environ. Sci. Technol. 48, 4581–4587 (2014).
    [Crossref]
  9. J. Anastassopoulou, E. Boukaki, C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, T. Theophanides, and G. Tosi, “Microimaging FT-IR spectroscopy on pathological breast tissues,” Vibr. Spectrosc. 51, 270–275 (2009).
  10. R. Mendelsohn, E. Paschalis, P. Sherman, and A. Boskey, “IR microscopic imaging of pathological states and fracture healing of bone,” Appl. Spectrosc. 54, 1183–1191 (2000).
  11. L. Mostaço-Guidolin, L. Murakami, A. Nomizo, and L. Bachmann, “Fourier transform infrared spectroscopy of skin cancer cells and tissues,” Appl. Spectrosc. Rev. 44, 438–455 (2009).
  12. B. Balázsa, G. Farkasa, O. Berkesic, R. Gyulaid, S. Berkóa, M. Budai-Szűcsa, P. Szabó-Révésza, L. Keménye, and E. Csányi, “Protein structure is changed in psoriatic skin on the unaffected region—Imaging possibility with ATR-FTIR spectroscopy,” Microchem. J. 117, 183–186 (2014).
  13. B. Bureau, C. Boussard, S. Cui, R. Chahal, M. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. Adam, and J. Lucasa, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
    [Crossref]
  14. Y. Lavi, A. Millo, and A. Katzir, “Thin ordered bundles of infrared-transmitting silver halide fibers,” Appl. Phys. Lett. 87, 241122 (2005).
    [Crossref]
  15. A. Millo, L. Lobachinsky, and A. Katzir, “Single-mode index-guiding photonic crystal fibers for the middle infrared,” IEEE Photon. Technol. Lett. 20, 869–871 (2008).
  16. Y. Matsuura and K. Naito, “Flexible hollow optical fiber bundle for infrared thermal image,” Biomed. Opt. Express 2, 65–70 (2011).
    [Crossref]
  17. Y. Matsuura, M. Saito, M. Miyagi, and A. Hongo, “Loss characteristics of circular hollow wave guide for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
  18. S. Kino and Y. Matsuura, “Nontoxic and chemically stable hollow optical fiber probe for Fourier transform infrared spectroscopy,” Appl. Spectrosc. 61, 1334–1337 (2007).
    [Crossref]
  19. S. Kino, Y. Tanaka, and Y. Matsuura, “Blood glucose measurement by using hollow optical fiber-based attenuated total reflection probe,” J. Biomed. Opt. 19, 057010 (2014).
  20. C. Huang, S. Kino, T. Katagiri, and Y. Matsuura, “Remote Fourier transform-infrared spectral imaging system with hollow-optical fiber bundle,” Appl. Opt. 51, 6913–6916 (2012).
    [Crossref]
  21. J. Rabolt and R. Bellar, “The nature of apodization in Fourier transform spectroscopy,” Appl. Spectrosc. 35, 132–135 (1981).
  22. P. Bassan, M. Weida, J. Rowletteb, and P. Gardner, “Large scale infrared imaging of tissue micro arrays (TMAs) using a tunable quantum cascade laser (QCL) based microscope,” Analyst 139, 3856–3859 (2014).
    [Crossref]
  23. S. Kumar, A. Esteban-Martin, T. Ideguchi, M. Yan, S. Holzner, T. Hänsch, N. Picqué, and M. Ebrahim-Zadeh, “Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti:sapphire laser,” Laser Photon. Rev. 8, 86–91 (2014).

2014 (6)

C. Johnson, N. Pleshko, M. Achary, and R. Suri, “Rapid and sensitive screening of 17β-estradiol estrogenicity using Fourier transform infrared imaging spectroscopy (FT-IRIS),” Environ. Sci. Technol. 48, 4581–4587 (2014).
[Crossref]

B. Balázsa, G. Farkasa, O. Berkesic, R. Gyulaid, S. Berkóa, M. Budai-Szűcsa, P. Szabó-Révésza, L. Keménye, and E. Csányi, “Protein structure is changed in psoriatic skin on the unaffected region—Imaging possibility with ATR-FTIR spectroscopy,” Microchem. J. 117, 183–186 (2014).

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. Adam, and J. Lucasa, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

S. Kino, Y. Tanaka, and Y. Matsuura, “Blood glucose measurement by using hollow optical fiber-based attenuated total reflection probe,” J. Biomed. Opt. 19, 057010 (2014).

P. Bassan, M. Weida, J. Rowletteb, and P. Gardner, “Large scale infrared imaging of tissue micro arrays (TMAs) using a tunable quantum cascade laser (QCL) based microscope,” Analyst 139, 3856–3859 (2014).
[Crossref]

S. Kumar, A. Esteban-Martin, T. Ideguchi, M. Yan, S. Holzner, T. Hänsch, N. Picqué, and M. Ebrahim-Zadeh, “Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti:sapphire laser,” Laser Photon. Rev. 8, 86–91 (2014).

2012 (1)

2011 (1)

2009 (2)

L. Mostaço-Guidolin, L. Murakami, A. Nomizo, and L. Bachmann, “Fourier transform infrared spectroscopy of skin cancer cells and tissues,” Appl. Spectrosc. Rev. 44, 438–455 (2009).

J. Anastassopoulou, E. Boukaki, C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, T. Theophanides, and G. Tosi, “Microimaging FT-IR spectroscopy on pathological breast tissues,” Vibr. Spectrosc. 51, 270–275 (2009).

2008 (2)

Z. Movasaghi, S. Rehman, and I. Rehman, “Fourier transform infrared (FTIR) spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 43, 134–179 (2008).
[Crossref]

A. Millo, L. Lobachinsky, and A. Katzir, “Single-mode index-guiding photonic crystal fibers for the middle infrared,” IEEE Photon. Technol. Lett. 20, 869–871 (2008).

2007 (2)

D. Maziak, M. Do, F. Shamji, S. Sundaresan, D. Perkins, and P. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer detection and prevention 31, 244–253 (2007).

S. Kino and Y. Matsuura, “Nontoxic and chemically stable hollow optical fiber probe for Fourier transform infrared spectroscopy,” Appl. Spectrosc. 61, 1334–1337 (2007).
[Crossref]

2006 (1)

S. Kazarian and K. Chan, “Applications of ATR-FTIR spectroscopic imaging to biomedical samples,” Biochim. Biophys. Acta 1758, 858–867 (2006).
[Crossref]

2005 (3)

X. Bi, G. Li, S. Doty, and N. Camacho, “A novel method for determination of collagen orientation in cartilage by Fourier transform infrared imaging spectroscopy (FT-IRIS),” Osetoarthritis Cartilage 13, 1050–1058 (2005).

R. Sahu and S. Mordechai, “Fourier transform infrared spectroscopy in cancer detection,” Future Oncol. 1, 635–647 (2005).

Y. Lavi, A. Millo, and A. Katzir, “Thin ordered bundles of infrared-transmitting silver halide fibers,” Appl. Phys. Lett. 87, 241122 (2005).
[Crossref]

2002 (1)

S. Argov, J. Ramesh, A. Salman, I. Sinelnikov, J. Goldstein, H. Guterman, and S. Mordechai, “Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients,” J. Biomed. Opt. 7, 248–254 (2002).
[Crossref]

2000 (1)

1991 (1)

P. Wong, R. Wong, T. Caputo, T. Godwin, and B. Rigas, “Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis,” Proc. Natl. Acad. Sci. USA 88, 10988–10992 (1991).

1989 (1)

1981 (1)

Achary, M.

C. Johnson, N. Pleshko, M. Achary, and R. Suri, “Rapid and sensitive screening of 17β-estradiol estrogenicity using Fourier transform infrared imaging spectroscopy (FT-IRIS),” Environ. Sci. Technol. 48, 4581–4587 (2014).
[Crossref]

Adam, J.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. Adam, and J. Lucasa, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Anastassopoulou, J.

J. Anastassopoulou, E. Boukaki, C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, T. Theophanides, and G. Tosi, “Microimaging FT-IR spectroscopy on pathological breast tissues,” Vibr. Spectrosc. 51, 270–275 (2009).

Anne, M.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. Adam, and J. Lucasa, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Argov, S.

S. Argov, J. Ramesh, A. Salman, I. Sinelnikov, J. Goldstein, H. Guterman, and S. Mordechai, “Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients,” J. Biomed. Opt. 7, 248–254 (2002).
[Crossref]

Bachmann, L.

L. Mostaço-Guidolin, L. Murakami, A. Nomizo, and L. Bachmann, “Fourier transform infrared spectroscopy of skin cancer cells and tissues,” Appl. Spectrosc. Rev. 44, 438–455 (2009).

Balázsa, B.

B. Balázsa, G. Farkasa, O. Berkesic, R. Gyulaid, S. Berkóa, M. Budai-Szűcsa, P. Szabó-Révésza, L. Keménye, and E. Csányi, “Protein structure is changed in psoriatic skin on the unaffected region—Imaging possibility with ATR-FTIR spectroscopy,” Microchem. J. 117, 183–186 (2014).

Bassan, P.

P. Bassan, M. Weida, J. Rowletteb, and P. Gardner, “Large scale infrared imaging of tissue micro arrays (TMAs) using a tunable quantum cascade laser (QCL) based microscope,” Analyst 139, 3856–3859 (2014).
[Crossref]

Bellar, R.

Berkesic, O.

B. Balázsa, G. Farkasa, O. Berkesic, R. Gyulaid, S. Berkóa, M. Budai-Szűcsa, P. Szabó-Révésza, L. Keménye, and E. Csányi, “Protein structure is changed in psoriatic skin on the unaffected region—Imaging possibility with ATR-FTIR spectroscopy,” Microchem. J. 117, 183–186 (2014).

Berkóa, S.

B. Balázsa, G. Farkasa, O. Berkesic, R. Gyulaid, S. Berkóa, M. Budai-Szűcsa, P. Szabó-Révésza, L. Keménye, and E. Csányi, “Protein structure is changed in psoriatic skin on the unaffected region—Imaging possibility with ATR-FTIR spectroscopy,” Microchem. J. 117, 183–186 (2014).

Bi, X.

X. Bi, G. Li, S. Doty, and N. Camacho, “A novel method for determination of collagen orientation in cartilage by Fourier transform infrared imaging spectroscopy (FT-IRIS),” Osetoarthritis Cartilage 13, 1050–1058 (2005).

Boskey, A.

Boukaki, E.

J. Anastassopoulou, E. Boukaki, C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, T. Theophanides, and G. Tosi, “Microimaging FT-IR spectroscopy on pathological breast tissues,” Vibr. Spectrosc. 51, 270–275 (2009).

Boussard, C.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. Adam, and J. Lucasa, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Budai-Szucsa, M.

B. Balázsa, G. Farkasa, O. Berkesic, R. Gyulaid, S. Berkóa, M. Budai-Szűcsa, P. Szabó-Révésza, L. Keménye, and E. Csányi, “Protein structure is changed in psoriatic skin on the unaffected region—Imaging possibility with ATR-FTIR spectroscopy,” Microchem. J. 117, 183–186 (2014).

Bureau, B.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. Adam, and J. Lucasa, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Camacho, N.

X. Bi, G. Li, S. Doty, and N. Camacho, “A novel method for determination of collagen orientation in cartilage by Fourier transform infrared imaging spectroscopy (FT-IRIS),” Osetoarthritis Cartilage 13, 1050–1058 (2005).

Camy, P.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. Adam, and J. Lucasa, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Caputo, T.

P. Wong, R. Wong, T. Caputo, T. Godwin, and B. Rigas, “Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis,” Proc. Natl. Acad. Sci. USA 88, 10988–10992 (1991).

Chahal, R.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. Adam, and J. Lucasa, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Chan, K.

S. Kazarian and K. Chan, “Applications of ATR-FTIR spectroscopic imaging to biomedical samples,” Biochim. Biophys. Acta 1758, 858–867 (2006).
[Crossref]

Charpentier, F.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. Adam, and J. Lucasa, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Conti, C.

J. Anastassopoulou, E. Boukaki, C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, T. Theophanides, and G. Tosi, “Microimaging FT-IR spectroscopy on pathological breast tissues,” Vibr. Spectrosc. 51, 270–275 (2009).

Csányi, E.

B. Balázsa, G. Farkasa, O. Berkesic, R. Gyulaid, S. Berkóa, M. Budai-Szűcsa, P. Szabó-Révésza, L. Keménye, and E. Csányi, “Protein structure is changed in psoriatic skin on the unaffected region—Imaging possibility with ATR-FTIR spectroscopy,” Microchem. J. 117, 183–186 (2014).

Cui, S.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. Adam, and J. Lucasa, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Do, M.

D. Maziak, M. Do, F. Shamji, S. Sundaresan, D. Perkins, and P. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer detection and prevention 31, 244–253 (2007).

Doty, S.

X. Bi, G. Li, S. Doty, and N. Camacho, “A novel method for determination of collagen orientation in cartilage by Fourier transform infrared imaging spectroscopy (FT-IRIS),” Osetoarthritis Cartilage 13, 1050–1058 (2005).

Doualan, J.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. Adam, and J. Lucasa, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Ebrahim-Zadeh, M.

S. Kumar, A. Esteban-Martin, T. Ideguchi, M. Yan, S. Holzner, T. Hänsch, N. Picqué, and M. Ebrahim-Zadeh, “Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti:sapphire laser,” Laser Photon. Rev. 8, 86–91 (2014).

Esteban-Martin, A.

S. Kumar, A. Esteban-Martin, T. Ideguchi, M. Yan, S. Holzner, T. Hänsch, N. Picqué, and M. Ebrahim-Zadeh, “Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti:sapphire laser,” Laser Photon. Rev. 8, 86–91 (2014).

Farkasa, G.

B. Balázsa, G. Farkasa, O. Berkesic, R. Gyulaid, S. Berkóa, M. Budai-Szűcsa, P. Szabó-Révésza, L. Keménye, and E. Csányi, “Protein structure is changed in psoriatic skin on the unaffected region—Imaging possibility with ATR-FTIR spectroscopy,” Microchem. J. 117, 183–186 (2014).

Ferraris, P.

J. Anastassopoulou, E. Boukaki, C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, T. Theophanides, and G. Tosi, “Microimaging FT-IR spectroscopy on pathological breast tissues,” Vibr. Spectrosc. 51, 270–275 (2009).

Gardner, P.

P. Bassan, M. Weida, J. Rowletteb, and P. Gardner, “Large scale infrared imaging of tissue micro arrays (TMAs) using a tunable quantum cascade laser (QCL) based microscope,” Analyst 139, 3856–3859 (2014).
[Crossref]

Giorgini, E.

J. Anastassopoulou, E. Boukaki, C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, T. Theophanides, and G. Tosi, “Microimaging FT-IR spectroscopy on pathological breast tissues,” Vibr. Spectrosc. 51, 270–275 (2009).

Godwin, T.

P. Wong, R. Wong, T. Caputo, T. Godwin, and B. Rigas, “Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis,” Proc. Natl. Acad. Sci. USA 88, 10988–10992 (1991).

Goldstein, J.

S. Argov, J. Ramesh, A. Salman, I. Sinelnikov, J. Goldstein, H. Guterman, and S. Mordechai, “Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients,” J. Biomed. Opt. 7, 248–254 (2002).
[Crossref]

Guterman, H.

S. Argov, J. Ramesh, A. Salman, I. Sinelnikov, J. Goldstein, H. Guterman, and S. Mordechai, “Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients,” J. Biomed. Opt. 7, 248–254 (2002).
[Crossref]

Gyulaid, R.

B. Balázsa, G. Farkasa, O. Berkesic, R. Gyulaid, S. Berkóa, M. Budai-Szűcsa, P. Szabó-Révésza, L. Keménye, and E. Csányi, “Protein structure is changed in psoriatic skin on the unaffected region—Imaging possibility with ATR-FTIR spectroscopy,” Microchem. J. 117, 183–186 (2014).

Hänsch, T.

S. Kumar, A. Esteban-Martin, T. Ideguchi, M. Yan, S. Holzner, T. Hänsch, N. Picqué, and M. Ebrahim-Zadeh, “Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti:sapphire laser,” Laser Photon. Rev. 8, 86–91 (2014).

Holzner, S.

S. Kumar, A. Esteban-Martin, T. Ideguchi, M. Yan, S. Holzner, T. Hänsch, N. Picqué, and M. Ebrahim-Zadeh, “Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti:sapphire laser,” Laser Photon. Rev. 8, 86–91 (2014).

Hongo, A.

Huang, C.

Ideguchi, T.

S. Kumar, A. Esteban-Martin, T. Ideguchi, M. Yan, S. Holzner, T. Hänsch, N. Picqué, and M. Ebrahim-Zadeh, “Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti:sapphire laser,” Laser Photon. Rev. 8, 86–91 (2014).

Johnson, C.

C. Johnson, N. Pleshko, M. Achary, and R. Suri, “Rapid and sensitive screening of 17β-estradiol estrogenicity using Fourier transform infrared imaging spectroscopy (FT-IRIS),” Environ. Sci. Technol. 48, 4581–4587 (2014).
[Crossref]

Katagiri, T.

Katzir, A.

A. Millo, L. Lobachinsky, and A. Katzir, “Single-mode index-guiding photonic crystal fibers for the middle infrared,” IEEE Photon. Technol. Lett. 20, 869–871 (2008).

Y. Lavi, A. Millo, and A. Katzir, “Thin ordered bundles of infrared-transmitting silver halide fibers,” Appl. Phys. Lett. 87, 241122 (2005).
[Crossref]

Kazarian, S.

S. Kazarian and K. Chan, “Applications of ATR-FTIR spectroscopic imaging to biomedical samples,” Biochim. Biophys. Acta 1758, 858–867 (2006).
[Crossref]

Keménye, L.

B. Balázsa, G. Farkasa, O. Berkesic, R. Gyulaid, S. Berkóa, M. Budai-Szűcsa, P. Szabó-Révésza, L. Keménye, and E. Csányi, “Protein structure is changed in psoriatic skin on the unaffected region—Imaging possibility with ATR-FTIR spectroscopy,” Microchem. J. 117, 183–186 (2014).

Kino, S.

Kumar, S.

S. Kumar, A. Esteban-Martin, T. Ideguchi, M. Yan, S. Holzner, T. Hänsch, N. Picqué, and M. Ebrahim-Zadeh, “Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti:sapphire laser,” Laser Photon. Rev. 8, 86–91 (2014).

Lavi, Y.

Y. Lavi, A. Millo, and A. Katzir, “Thin ordered bundles of infrared-transmitting silver halide fibers,” Appl. Phys. Lett. 87, 241122 (2005).
[Crossref]

Li, G.

X. Bi, G. Li, S. Doty, and N. Camacho, “A novel method for determination of collagen orientation in cartilage by Fourier transform infrared imaging spectroscopy (FT-IRIS),” Osetoarthritis Cartilage 13, 1050–1058 (2005).

Lobachinsky, L.

A. Millo, L. Lobachinsky, and A. Katzir, “Single-mode index-guiding photonic crystal fibers for the middle infrared,” IEEE Photon. Technol. Lett. 20, 869–871 (2008).

Loréal, O.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. Adam, and J. Lucasa, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Lucas, P.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. Adam, and J. Lucasa, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Lucasa, J.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. Adam, and J. Lucasa, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Matsuura, Y.

Maziak, D.

D. Maziak, M. Do, F. Shamji, S. Sundaresan, D. Perkins, and P. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer detection and prevention 31, 244–253 (2007).

Mendelsohn, R.

Millo, A.

A. Millo, L. Lobachinsky, and A. Katzir, “Single-mode index-guiding photonic crystal fibers for the middle infrared,” IEEE Photon. Technol. Lett. 20, 869–871 (2008).

Y. Lavi, A. Millo, and A. Katzir, “Thin ordered bundles of infrared-transmitting silver halide fibers,” Appl. Phys. Lett. 87, 241122 (2005).
[Crossref]

Miyagi, M.

Monbet, V.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. Adam, and J. Lucasa, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Mordechai, S.

R. Sahu and S. Mordechai, “Fourier transform infrared spectroscopy in cancer detection,” Future Oncol. 1, 635–647 (2005).

S. Argov, J. Ramesh, A. Salman, I. Sinelnikov, J. Goldstein, H. Guterman, and S. Mordechai, “Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients,” J. Biomed. Opt. 7, 248–254 (2002).
[Crossref]

Mostaço-Guidolin, L.

L. Mostaço-Guidolin, L. Murakami, A. Nomizo, and L. Bachmann, “Fourier transform infrared spectroscopy of skin cancer cells and tissues,” Appl. Spectrosc. Rev. 44, 438–455 (2009).

Movasaghi, Z.

Z. Movasaghi, S. Rehman, and I. Rehman, “Fourier transform infrared (FTIR) spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 43, 134–179 (2008).
[Crossref]

Murakami, L.

L. Mostaço-Guidolin, L. Murakami, A. Nomizo, and L. Bachmann, “Fourier transform infrared spectroscopy of skin cancer cells and tissues,” Appl. Spectrosc. Rev. 44, 438–455 (2009).

Naito, K.

Nazabal, V.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. Adam, and J. Lucasa, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Nomizo, A.

L. Mostaço-Guidolin, L. Murakami, A. Nomizo, and L. Bachmann, “Fourier transform infrared spectroscopy of skin cancer cells and tissues,” Appl. Spectrosc. Rev. 44, 438–455 (2009).

Paschalis, E.

Perkins, D.

D. Maziak, M. Do, F. Shamji, S. Sundaresan, D. Perkins, and P. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer detection and prevention 31, 244–253 (2007).

Picqué, N.

S. Kumar, A. Esteban-Martin, T. Ideguchi, M. Yan, S. Holzner, T. Hänsch, N. Picqué, and M. Ebrahim-Zadeh, “Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti:sapphire laser,” Laser Photon. Rev. 8, 86–91 (2014).

Pleshko, N.

C. Johnson, N. Pleshko, M. Achary, and R. Suri, “Rapid and sensitive screening of 17β-estradiol estrogenicity using Fourier transform infrared imaging spectroscopy (FT-IRIS),” Environ. Sci. Technol. 48, 4581–4587 (2014).
[Crossref]

Quetel, L.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. Adam, and J. Lucasa, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Rabolt, J.

Ramesh, J.

S. Argov, J. Ramesh, A. Salman, I. Sinelnikov, J. Goldstein, H. Guterman, and S. Mordechai, “Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients,” J. Biomed. Opt. 7, 248–254 (2002).
[Crossref]

Rehman, I.

Z. Movasaghi, S. Rehman, and I. Rehman, “Fourier transform infrared (FTIR) spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 43, 134–179 (2008).
[Crossref]

Rehman, S.

Z. Movasaghi, S. Rehman, and I. Rehman, “Fourier transform infrared (FTIR) spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 43, 134–179 (2008).
[Crossref]

Rigas, B.

P. Wong, R. Wong, T. Caputo, T. Godwin, and B. Rigas, “Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis,” Proc. Natl. Acad. Sci. USA 88, 10988–10992 (1991).

Rowletteb, J.

P. Bassan, M. Weida, J. Rowletteb, and P. Gardner, “Large scale infrared imaging of tissue micro arrays (TMAs) using a tunable quantum cascade laser (QCL) based microscope,” Analyst 139, 3856–3859 (2014).
[Crossref]

Rubini, C.

J. Anastassopoulou, E. Boukaki, C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, T. Theophanides, and G. Tosi, “Microimaging FT-IR spectroscopy on pathological breast tissues,” Vibr. Spectrosc. 51, 270–275 (2009).

Sabbatini, S.

J. Anastassopoulou, E. Boukaki, C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, T. Theophanides, and G. Tosi, “Microimaging FT-IR spectroscopy on pathological breast tissues,” Vibr. Spectrosc. 51, 270–275 (2009).

Sahu, R.

R. Sahu and S. Mordechai, “Fourier transform infrared spectroscopy in cancer detection,” Future Oncol. 1, 635–647 (2005).

Saito, M.

Salman, A.

S. Argov, J. Ramesh, A. Salman, I. Sinelnikov, J. Goldstein, H. Guterman, and S. Mordechai, “Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients,” J. Biomed. Opt. 7, 248–254 (2002).
[Crossref]

Shamji, F.

D. Maziak, M. Do, F. Shamji, S. Sundaresan, D. Perkins, and P. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer detection and prevention 31, 244–253 (2007).

Sherman, P.

Sinelnikov, I.

S. Argov, J. Ramesh, A. Salman, I. Sinelnikov, J. Goldstein, H. Guterman, and S. Mordechai, “Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients,” J. Biomed. Opt. 7, 248–254 (2002).
[Crossref]

Sire, O.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. Adam, and J. Lucasa, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Sundaresan, S.

D. Maziak, M. Do, F. Shamji, S. Sundaresan, D. Perkins, and P. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer detection and prevention 31, 244–253 (2007).

Suri, R.

C. Johnson, N. Pleshko, M. Achary, and R. Suri, “Rapid and sensitive screening of 17β-estradiol estrogenicity using Fourier transform infrared imaging spectroscopy (FT-IRIS),” Environ. Sci. Technol. 48, 4581–4587 (2014).
[Crossref]

Szabó-Révésza, P.

B. Balázsa, G. Farkasa, O. Berkesic, R. Gyulaid, S. Berkóa, M. Budai-Szűcsa, P. Szabó-Révésza, L. Keménye, and E. Csányi, “Protein structure is changed in psoriatic skin on the unaffected region—Imaging possibility with ATR-FTIR spectroscopy,” Microchem. J. 117, 183–186 (2014).

Tanaka, Y.

S. Kino, Y. Tanaka, and Y. Matsuura, “Blood glucose measurement by using hollow optical fiber-based attenuated total reflection probe,” J. Biomed. Opt. 19, 057010 (2014).

Tariel, H.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. Adam, and J. Lucasa, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Theophanides, T.

J. Anastassopoulou, E. Boukaki, C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, T. Theophanides, and G. Tosi, “Microimaging FT-IR spectroscopy on pathological breast tissues,” Vibr. Spectrosc. 51, 270–275 (2009).

Tosi, G.

J. Anastassopoulou, E. Boukaki, C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, T. Theophanides, and G. Tosi, “Microimaging FT-IR spectroscopy on pathological breast tissues,” Vibr. Spectrosc. 51, 270–275 (2009).

Weida, M.

P. Bassan, M. Weida, J. Rowletteb, and P. Gardner, “Large scale infrared imaging of tissue micro arrays (TMAs) using a tunable quantum cascade laser (QCL) based microscope,” Analyst 139, 3856–3859 (2014).
[Crossref]

Wong, P.

D. Maziak, M. Do, F. Shamji, S. Sundaresan, D. Perkins, and P. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer detection and prevention 31, 244–253 (2007).

P. Wong, R. Wong, T. Caputo, T. Godwin, and B. Rigas, “Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis,” Proc. Natl. Acad. Sci. USA 88, 10988–10992 (1991).

Wong, R.

P. Wong, R. Wong, T. Caputo, T. Godwin, and B. Rigas, “Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis,” Proc. Natl. Acad. Sci. USA 88, 10988–10992 (1991).

Yan, M.

S. Kumar, A. Esteban-Martin, T. Ideguchi, M. Yan, S. Holzner, T. Hänsch, N. Picqué, and M. Ebrahim-Zadeh, “Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti:sapphire laser,” Laser Photon. Rev. 8, 86–91 (2014).

Analyst (1)

P. Bassan, M. Weida, J. Rowletteb, and P. Gardner, “Large scale infrared imaging of tissue micro arrays (TMAs) using a tunable quantum cascade laser (QCL) based microscope,” Analyst 139, 3856–3859 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Lavi, A. Millo, and A. Katzir, “Thin ordered bundles of infrared-transmitting silver halide fibers,” Appl. Phys. Lett. 87, 241122 (2005).
[Crossref]

Appl. Spectrosc. (3)

Appl. Spectrosc. Rev. (2)

L. Mostaço-Guidolin, L. Murakami, A. Nomizo, and L. Bachmann, “Fourier transform infrared spectroscopy of skin cancer cells and tissues,” Appl. Spectrosc. Rev. 44, 438–455 (2009).

Z. Movasaghi, S. Rehman, and I. Rehman, “Fourier transform infrared (FTIR) spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 43, 134–179 (2008).
[Crossref]

Biochim. Biophys. Acta (1)

S. Kazarian and K. Chan, “Applications of ATR-FTIR spectroscopic imaging to biomedical samples,” Biochim. Biophys. Acta 1758, 858–867 (2006).
[Crossref]

Biomed. Opt. Express (1)

Cancer detection and prevention (1)

D. Maziak, M. Do, F. Shamji, S. Sundaresan, D. Perkins, and P. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer detection and prevention 31, 244–253 (2007).

Environ. Sci. Technol. (1)

C. Johnson, N. Pleshko, M. Achary, and R. Suri, “Rapid and sensitive screening of 17β-estradiol estrogenicity using Fourier transform infrared imaging spectroscopy (FT-IRIS),” Environ. Sci. Technol. 48, 4581–4587 (2014).
[Crossref]

Future Oncol. (1)

R. Sahu and S. Mordechai, “Fourier transform infrared spectroscopy in cancer detection,” Future Oncol. 1, 635–647 (2005).

IEEE Photon. Technol. Lett. (1)

A. Millo, L. Lobachinsky, and A. Katzir, “Single-mode index-guiding photonic crystal fibers for the middle infrared,” IEEE Photon. Technol. Lett. 20, 869–871 (2008).

J. Biomed. Opt. (2)

S. Argov, J. Ramesh, A. Salman, I. Sinelnikov, J. Goldstein, H. Guterman, and S. Mordechai, “Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients,” J. Biomed. Opt. 7, 248–254 (2002).
[Crossref]

S. Kino, Y. Tanaka, and Y. Matsuura, “Blood glucose measurement by using hollow optical fiber-based attenuated total reflection probe,” J. Biomed. Opt. 19, 057010 (2014).

J. Opt. Soc. Am. A (1)

Laser Photon. Rev. (1)

S. Kumar, A. Esteban-Martin, T. Ideguchi, M. Yan, S. Holzner, T. Hänsch, N. Picqué, and M. Ebrahim-Zadeh, “Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti:sapphire laser,” Laser Photon. Rev. 8, 86–91 (2014).

Microchem. J. (1)

B. Balázsa, G. Farkasa, O. Berkesic, R. Gyulaid, S. Berkóa, M. Budai-Szűcsa, P. Szabó-Révésza, L. Keménye, and E. Csányi, “Protein structure is changed in psoriatic skin on the unaffected region—Imaging possibility with ATR-FTIR spectroscopy,” Microchem. J. 117, 183–186 (2014).

Opt. Eng. (1)

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. Adam, and J. Lucasa, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Osetoarthritis Cartilage (1)

X. Bi, G. Li, S. Doty, and N. Camacho, “A novel method for determination of collagen orientation in cartilage by Fourier transform infrared imaging spectroscopy (FT-IRIS),” Osetoarthritis Cartilage 13, 1050–1058 (2005).

Proc. Natl. Acad. Sci. USA (1)

P. Wong, R. Wong, T. Caputo, T. Godwin, and B. Rigas, “Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis,” Proc. Natl. Acad. Sci. USA 88, 10988–10992 (1991).

Vibr. Spectrosc. (1)

J. Anastassopoulou, E. Boukaki, C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, T. Theophanides, and G. Tosi, “Microimaging FT-IR spectroscopy on pathological breast tissues,” Vibr. Spectrosc. 51, 270–275 (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Schematic of reflection experimental setup in a preliminary test.
Fig. 2.
Fig. 2. Interferogram measured by one of the fiber elements.
Fig. 3.
Fig. 3. Schematic of reflectance imaging system with the light source fiber probe.
Fig. 4.
Fig. 4. Radiation spectrum of light source and FT-IR beam.
Fig. 5.
Fig. 5. Optimization of stand-off distance.
Fig. 6.
Fig. 6. Spectra with porcine fat and without fat on the mirror.
Fig. 7.
Fig. 7. Sample position shown in the visible image (left) and the spectral image (right).
Fig. 8.
Fig. 8. Schematic of reflectance spectral imaging system with hybrid fiber probe.
Fig. 9.
Fig. 9. Spectra of porcine fat and mirror only.
Fig. 10.
Fig. 10. Visible image and spectral image of L-shaped sample.
Fig. 11.
Fig. 11. Spectra of porcine fat and tooth only.
Fig. 12.
Fig. 12. Result of spectral imaging of fat painted on the tooth.
Fig. 13.
Fig. 13. Result of spectral imaging of porcine tissue.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S ( ν ) = 0 L A ( x ) I ( x ) cos 2 π ν x d x .
A ( x ) = 0.54 + 0.46 cos ( π x L ) .

Metrics