Abstract

This paper will present a prototype of the first set of vortex retarders made of liquid crystal polymers recorded by polarization holography. Vortex retarders are birefringent plates characterized by a rotation of their fast axis. Liquid crystals possess birefringent properties and they are locally orientable. Their orientation is defined by the perpendicular to the local orientation of the recording field. Polarization holography is a purely optical recording method. It is based on the superimposition of coherent and differently polarized beams. It is used to shape the electric field pattern to enable the recording of vortex retarders. The paper details the mathematical model of the superimposition process. The recording setup is exposed; it is characterized by a nearly common path interferometer. Two sets of measurements allowing the prediction of the retarder’s features are presented and compared. Finally, the experimentally recorded retarder is shown, its characteristics are investigated and compared to the predicted ones.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization holography for vortex retarders recording

Pierre Piron, Pascal Blain, Serge Habraken, and Dimitri Mawet
Appl. Opt. 52(28) 7040-7048 (2013)

Liquid crystal microlens arrays recorded by polarization holography

Ulises Ruiz, Pasquale Pagliusi, Clementina Provenzano, Eugenia Lepera, and Gabriella Cipparrone
Appl. Opt. 54(11) 3303-3307 (2015)

Vortex retarders produced from photo-aligned liquid crystal polymers

Scott C. McEldowney, David M. Shemo, and Russell A. Chipman
Opt. Express 16(10) 7295-7308 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription