Abstract

The objective of this paper is to describe a fast and robust automatic single-shot dual-wavelength holographic calibration method that can be used for online shape measurement applications. We present a model of the correction in two terms for each lobe, one to compensate the systematic errors caused by off-axis angles and the other for the curvature of the reference waves, respectively. Each hologram is calibrated independently without a need for an iterative procedure or information of the experimental set-up. The calibration parameters are extracted directly from speckle displacements between different reconstruction planes. The parameters can be defined as any fraction of a pixel to avoid the effect of quantization. Using the speckle displacements, problems associated with phase wrapping is avoided. The procedure is shown to give a shape accuracy of 34 μm using a synthetic wavelength of 1.1 mm for a measurement on a cylindrical test object with a trace over a field of view of 18mm×18mm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual-wavelength digital holography: single-shot shape evaluation using speckle displacements and regularization

Per Bergström, Davood Khodadad, Emil Hällstig, and Mikael Sjödahl
Appl. Opt. 53(1) 123-131 (2014)

Single-shot, dual-wavelength digital holography based on polarizing separation

D. G. Abdelsalam, Robert Magnusson, and Daesuk Kim
Appl. Opt. 50(19) 3360-3368 (2011)

Robust sub-micrometer displacement measurement using dual wavelength speckle correlation

Mahsa Farsad, Chris Evans, and Faramarz Farahi
Opt. Express 23(11) 14960-14972 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription