Abstract

The PSM model is used to analyze the process of diffraction occurring in volume reflection gratings in which fringe contrast is an arbitrary function of distance within the grating. General analytic expressions for diffraction efficiency at Bragg resonance are obtained for unslanted panchromatic lossless reflection gratings at oblique incidence. These formulas are then checked for several diverse fringe contrast profiles with numerical solutions of the Helmholtz equation, where exceptionally good agreement is observed. Away from Bragg resonance, the case of the hyperbolically decaying fringe contrast profile is shown to lead to an analytic expression for the diffraction efficiency and this is again compared successfully with numerical solutions of the Helmholtz equation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Using the parallel stacked mirror model to analytically describe diffraction in the planar volume reflection grating with finite absorption

David Brotherton-Ratcliffe, Ardeshir Osanlou, and Peter Excell
Appl. Opt. 54(12) 3700-3707 (2015)

Analytical treatment of the polychromatic spatially multiplexed volume holographic grating

David Brotherton-Ratcliffe
Appl. Opt. 51(30) 7188-7199 (2012)

Comparative study of the accuracy of the PSM and Kogelnik models of diffraction in reflection and transmission holographic gratings

David Brotherton-Ratcliffe, Lishen Shi, Ardie Osanlou, and Peter Excell
Opt. Express 22(26) 32384-32405 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (46)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription