Abstract

We propose a fringing-effect model based on the experimentally measured phase response across the phase transition region of a liquid crystal on silicon (LCOS) device. The measured phase profile in the phase transition region is characterized by a scaled error function of the flyback width. The flyback width can be determined by a cubic function of the phase depth between neighboring pixels. This dependence of the flyback width on the phase depth is explained by a linear rotation model of the liquid crystal director. The simulated diffraction efficiency based on the fringing-effect model shows a close agreement with the experimental measurement.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Model-based compensation of pixel crosstalk in liquid crystal spatial light modulators

Simon Moser, Monika Ritsch-Marte, and Gregor Thalhammer
Opt. Express 27(18) 25046-25063 (2019)

Digital phase-only liquid crystal on silicon device with enhanced optical efficiency

H. Yang and D. P. Chu
OSA Continuum 2(8) 2445-2459 (2019)

On the fringing-field effect in liquid-crystal beam-steering devices

Boris Apter, Uzi Efron, and Eldad Bahat-Treidel
Appl. Opt. 43(1) 11-19 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription