Abstract

The light signal through single-mode fiber is unstable, rapidly decays as it propagates, and has limited effective transmission distance. In this study, to extend its transmission distance, a microaxicon was designed at the single-mode fiber end and the emitted light analyzed via simulations and experiments. Results indicate that an 80 μm maximum transmission distance is achievable with the microaxicon at a 45° base angle. Further, the divergence angle of the light is reduced from 4.1° to 0.47°, its stability is improved by 97%, and the light spot is sharp at 70–80 μm away from the fiber end.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode

Jiemei Wang, Chunhui Lu, Shangbin Li, and Zhengyuan Xu
Opt. Express 27(9) 12171-12181 (2019)

Output characteristics of two-circle coaxial optical fiber bundle with regard to three-dimensional tip clearance

Siying Xie, Xiaodong Zhang, Bing Wu, and Yiwei Xiong
Opt. Express 26(19) 25244-25256 (2018)

Spherical coupling probe for measuring inner dimensions of microstructures

Yuanzheng Chen, Jiwen Cui, and Jiubin Tan
Opt. Express 26(26) 33523-33533 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Cui, Y. Chen, and J. Tan, “Improvement of dimensional measurement accuracy of microstructures with high aspect ratio with a spherical coupling fiber probe,” Meas. Sci. Technol. 25, 075902 (2014).
    [Crossref]
  2. J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, “Achievement of large spot size and long collimation length using UV curable self-assembled polymer lens on a beam expanding core-less silica fiber,” IEEE Photon. Technol. Lett. 16, 2499–2501 (2004).
    [Crossref]
  3. J. Lee, “Collimation scheme for fiber lens using polymer coating,” in International Conference on Computing and Communications Strategies (IEEE, 2012), pp. 1423–1425.
  4. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
    [Crossref]
  5. R. Arimoto, C. Saloma, T. Tanaka, and S. Kawata, “Imaging properties of axicon in a scanning optical system,” Appl. Opt. 31, 6653–6657 (1992).
    [Crossref]
  6. M. Lei and B. Yao, “Characteristics of beam profile of Gaussian beam passing through an axicon,” Opt. Commun. 239, 367–372 (2004).
    [Crossref]

2014 (1)

J. Cui, Y. Chen, and J. Tan, “Improvement of dimensional measurement accuracy of microstructures with high aspect ratio with a spherical coupling fiber probe,” Meas. Sci. Technol. 25, 075902 (2014).
[Crossref]

2004 (2)

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, “Achievement of large spot size and long collimation length using UV curable self-assembled polymer lens on a beam expanding core-less silica fiber,” IEEE Photon. Technol. Lett. 16, 2499–2501 (2004).
[Crossref]

M. Lei and B. Yao, “Characteristics of beam profile of Gaussian beam passing through an axicon,” Opt. Commun. 239, 367–372 (2004).
[Crossref]

1992 (1)

1987 (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]

Arimoto, R.

Chang, S.

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, “Achievement of large spot size and long collimation length using UV curable self-assembled polymer lens on a beam expanding core-less silica fiber,” IEEE Photon. Technol. Lett. 16, 2499–2501 (2004).
[Crossref]

Chen, Y.

J. Cui, Y. Chen, and J. Tan, “Improvement of dimensional measurement accuracy of microstructures with high aspect ratio with a spherical coupling fiber probe,” Meas. Sci. Technol. 25, 075902 (2014).
[Crossref]

Cui, J.

J. Cui, Y. Chen, and J. Tan, “Improvement of dimensional measurement accuracy of microstructures with high aspect ratio with a spherical coupling fiber probe,” Meas. Sci. Technol. 25, 075902 (2014).
[Crossref]

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]

Han, M.

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, “Achievement of large spot size and long collimation length using UV curable self-assembled polymer lens on a beam expanding core-less silica fiber,” IEEE Photon. Technol. Lett. 16, 2499–2501 (2004).
[Crossref]

Kawata, S.

Kim, J.

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, “Achievement of large spot size and long collimation length using UV curable self-assembled polymer lens on a beam expanding core-less silica fiber,” IEEE Photon. Technol. Lett. 16, 2499–2501 (2004).
[Crossref]

Lee, J.

J. Lee, “Collimation scheme for fiber lens using polymer coating,” in International Conference on Computing and Communications Strategies (IEEE, 2012), pp. 1423–1425.

Lee, J. W.

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, “Achievement of large spot size and long collimation length using UV curable self-assembled polymer lens on a beam expanding core-less silica fiber,” IEEE Photon. Technol. Lett. 16, 2499–2501 (2004).
[Crossref]

Lei, M.

M. Lei and B. Yao, “Characteristics of beam profile of Gaussian beam passing through an axicon,” Opt. Commun. 239, 367–372 (2004).
[Crossref]

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]

Oh, K.

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, “Achievement of large spot size and long collimation length using UV curable self-assembled polymer lens on a beam expanding core-less silica fiber,” IEEE Photon. Technol. Lett. 16, 2499–2501 (2004).
[Crossref]

Saloma, C.

Tan, J.

J. Cui, Y. Chen, and J. Tan, “Improvement of dimensional measurement accuracy of microstructures with high aspect ratio with a spherical coupling fiber probe,” Meas. Sci. Technol. 25, 075902 (2014).
[Crossref]

Tanaka, T.

Yao, B.

M. Lei and B. Yao, “Characteristics of beam profile of Gaussian beam passing through an axicon,” Opt. Commun. 239, 367–372 (2004).
[Crossref]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, “Achievement of large spot size and long collimation length using UV curable self-assembled polymer lens on a beam expanding core-less silica fiber,” IEEE Photon. Technol. Lett. 16, 2499–2501 (2004).
[Crossref]

Meas. Sci. Technol. (1)

J. Cui, Y. Chen, and J. Tan, “Improvement of dimensional measurement accuracy of microstructures with high aspect ratio with a spherical coupling fiber probe,” Meas. Sci. Technol. 25, 075902 (2014).
[Crossref]

Opt. Commun. (1)

M. Lei and B. Yao, “Characteristics of beam profile of Gaussian beam passing through an axicon,” Opt. Commun. 239, 367–372 (2004).
[Crossref]

Phys. Rev. Lett. (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]

Other (1)

J. Lee, “Collimation scheme for fiber lens using polymer coating,” in International Conference on Computing and Communications Strategies (IEEE, 2012), pp. 1423–1425.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. Bessel beams generated using a microaxicon.
Fig. 2.
Fig. 2. Simulation arrangement.
Fig. 3.
Fig. 3. Spot images at different positions. (a) Ring. (b) Concentric circles. (c) Dot.
Fig. 4.
Fig. 4. Light simulations (a) passing through a microaxicon with a base angle of 45° and (b) passing through a flat fiber end.
Fig. 5.
Fig. 5. Relation among radius of microaxicon, base angle, and maximum collimation distance.
Fig. 6.
Fig. 6. Light intensity distribution on the principal axis.
Fig. 7.
Fig. 7. Intensity distribution of light passing through a 45° microaxicon.
Fig. 8.
Fig. 8. Microaxicon lensed fiber used in the experiment.
Fig. 9.
Fig. 9. Experimental environment used to verify the stability of the light passing through the microaxicon.
Fig. 10.
Fig. 10. Stability of spot image (a) at flat fiber end (b) at microaxicon lensed fiber end.
Fig. 11.
Fig. 11. Stability of light beam passing through the flat fiber end and the microaxicon-lensed fiber end in far field.
Fig. 12.
Fig. 12. Calculation of divergence angle.
Fig. 13.
Fig. 13. Relation between propagation distance and spot radius.
Fig. 14.
Fig. 14. Arrangement of sampling points.
Fig. 15.
Fig. 15. Distribution of light in far field: (a) with microaxicon-lensed fiber; (b) without the microaxicon lens.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

t ( r 1 ) = { exp [ i k ( n 1 ) φ r 1 ] , r 1 R 0 r 1 > R ,
E i ( r 2 , z ) = exp ( r 2 2 ω 2 ) ,
E o ( r 2 , z ) = i k z exp ( i k 2 z ) 0 [ exp ( r 2 2 ω 2 ) t ( r 2 ) × exp ( i k r 2 2 2 z ) J 0 ( k r 1 r 2 z ) r 2 d r 2 ] .
E o ( r 2 , z ) = i k z exp ( i k 2 z ) 0 R { exp [ i k ( r 2 2 2 z ( n 1 ) φ r 2 ) ] × exp ( r 2 2 ω 2 ) J 0 ( k r 1 r 2 z ) r 2 d r 2 } .
h ( r 2 ) = r 2 2 2 z ( n 1 ) φ r 2 .
d h ( r 2 ) d r 2 = r 2 z ( n 1 ) φ = 0 ,
z max = R ( n 1 ) φ .
I ( 0 , z ) α 2 λ z J 0 2 ( α r 2 ) ,
P V = C P max C P min .
R pds = ( S max S min ) D .
tan θ = R r s ,

Metrics