Abstract

YPO4:Tm, Yb inverse opal photonic crystals were successfully synthesized by the colloidal crystal templates method, and the visible–infrared quantum cutting (QC) photoluminescence properties of YPO4:Tm, Yb inverse opal photonic crystals were investigated. We obtained tetragonal phase YPO4 in all the samples when the samples sintered at 950°C for 5 h. The visible emission intensity of Tm3+ decreased significantly when the photonic bandgap was located at 650 nm under 480 nm excitation. On the contrary, the QC emission intensity of Yb3+ was enhanced as compared with the no photonic bandgap sample. When the photonic bandgap was located at 480 nm, the Yb3+ and Tm3+ light-emitting intensity weakened at the same time. We demonstrated that the energy transfer between Tm3+ and Yb3+ is enhanced by the suppression of the red emission of Tm3+. Additionally, the mechanisms for the influence of the photonic bandgap on the energy transfer process of the Tm3+, Yb3+ codoped YPO4 inverse opal are discussed.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of the near-infrared emission in novel quantum cutting SiO2:Tb3+, Yb3+ thin films by Ag species

Siqin Wang, Jianbei Qiu, Xuhui Xu, Qi Wang, Dacheng Zhou, Zhengwen Yang, and Zhiguo Song
Opt. Mater. Express 6(4) 1065-1078 (2016)

Effect of photonic bandgap on upconversion emission in YbPO4:Er inverse opal photonic crystals

Zhengwen Yang, Kan Zhu, Zhiguo Song, Dacheng Zhou, Zhaoyi Yin, and Jianbei Qiu
Appl. Opt. 50(3) 287-290 (2011)

Upconversion emission and color tunability in Al2Y4O9: Yb, Er inverse opal

Dong Yan, Jianbei Qiu, Zhengwen Yang, Zhiguo Song, Dacheng Zhou, Xue Yu, Yong Yang, Zhaoyi Yin, and Lei Yan
Opt. Mater. Express 2(5) 650-656 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92, 1668–1674 (2002).
    [Crossref]
  2. B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: down-conversion,” Sol. Energy Mater. Sol. Cells 90, 1189–1207 (2006).
  3. P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B 71, 014119 (2005).
    [Crossref]
  4. Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, “Concentration-dependent near-infrared quantum cutting in GdBO3:Tb3+,Yb3+ nanophosphors,” Appl. Phys. Lett. 90, 061914 (2007).
    [Crossref]
  5. Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+, Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett. 91, 051903 (2007).
    [Crossref]
  6. S. Ye, B. Zhu, J. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92, 141112 (2008).
    [Crossref]
  7. D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+: TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C 113, 6406–6410 (2009).
    [Crossref]
  8. Z. F. Wang, Y. H. Wang, Y. Z. Li, and H. J. Zhang, “Near-infrared quantum cutting in Tb3+, Yb3+ co-doped calcium tungstate via second-order downconversion,” J. Mater. Res. 26, 693–696 (2011).
    [Crossref]
  9. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21, 3073–3077 (2009).
    [Crossref]
  10. J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B 81, 155112 (2010).
    [Crossref]
  11. Y. Katayama and S. Tanabe, “Near infrared downconversion in Pr3+–Yb3+ codoped oxyfluoride glass ceramics,” Opt. Mater. 33, 176–179 (2010).
  12. K. Y. Li, L. Y. Liu, R. Z. Wang, S. G. Xiao, H. Zhou, and H. Yan, “Broadband sensitization of downconversion phosphor YPO4 by optimizing TiO2 substitution in host lattice co-doped with Pr3+-Yb3+ ion-couple,” J. Appl. Phys. 115, 123103 (2014).
    [Crossref]
  13. X. Liu, Y. Qiao, G. Dong, S. Ye, B. Zhu, G. Lakshminarayana, D. Chen, and J. Qiu, “Cooperative downconversion in Yb3+-RE3+ (RE = Tm or Pr) codoped lanthanum borogermanate glasses,” Opt. Lett. 33, 2858–2860 (2008).
    [Crossref]
  14. L. Xie, Y. Wang, and H. Zhang, “Near-infrared quantum cutting in YPO4: Yb3+, Tm3+ via cooperative energy transfer,” Appl. Phys. Lett. 94, 061905 (2009).
    [Crossref]
  15. S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16, 8989–8994 (2008).
    [Crossref]
  16. Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum cutting in Tm3+/Yb3+ -codoped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc. 93, 654–657 (2010).
    [Crossref]
  17. G. C. Jiang, X. T. Wei, Y. H. Cheng, C. K. Duan, and M. Yin, “Broadband downconversion in YVO4:Tm3+, Yb3+ phosphors,” J. Rare Earths 31, 27–31 (2013)
    [Crossref]
  18. W. Zheng, H. M. Zhu, R. F. Li, D. T. Tu, Y. S. Liu, W. Q. Luo, and X. Y. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+, Yb3+ phosphors,” Phys. Chem. Chem. Phys. 14, 6974–6980 (2012).
    [Crossref]
  19. E. Yablonovitch, “Spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref]
  20. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [Crossref]
  21. J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76, 3513–3515 (2000).
    [Crossref]
  22. Z. W. Yang, J. Zhou, X. G. Huang, G. Yang, Q. Xie, L. Sun, B. Li, and L. Li, “Photonic band gap and photoluminescence properties of LaPO4:Tb inverse opal,” Chem. Phys. Lett. 455, 55–58 (2008).
    [Crossref]
  23. R. F. Nabiev, P. Yeh, and J. J. Sanchez-Mondragon, “Dynamics of the spontaneous emission of an atom into the photon-density-of-states gap: solvable quantum-electrodynamical model,” Phys. Rev. A 47, 3380–3384 (1993).
    [Crossref]
  24. S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
    [Crossref]
  25. X. H. Wang, R. Z. Wang, B. Y. Gu, and G. Z. Yang, “Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps,” Phys. Rev. Lett. 88, 093902 (2002).
    [Crossref]
  26. Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. 43, 6616–6618 (2009).
  27. Z. W. Yang, K. Zhu, Z. G. Song, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Energy transfer and photoluminescence modification in Yb–Er–Tm triply doped Y2Ti2O7 upconversion inverse opal,” Appl. Opt. 50, 287–290 (2011).
    [Crossref]
  28. P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64, 841–846 (2003).
    [Crossref]

2014 (1)

K. Y. Li, L. Y. Liu, R. Z. Wang, S. G. Xiao, H. Zhou, and H. Yan, “Broadband sensitization of downconversion phosphor YPO4 by optimizing TiO2 substitution in host lattice co-doped with Pr3+-Yb3+ ion-couple,” J. Appl. Phys. 115, 123103 (2014).
[Crossref]

2013 (1)

G. C. Jiang, X. T. Wei, Y. H. Cheng, C. K. Duan, and M. Yin, “Broadband downconversion in YVO4:Tm3+, Yb3+ phosphors,” J. Rare Earths 31, 27–31 (2013)
[Crossref]

2012 (1)

W. Zheng, H. M. Zhu, R. F. Li, D. T. Tu, Y. S. Liu, W. Q. Luo, and X. Y. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+, Yb3+ phosphors,” Phys. Chem. Chem. Phys. 14, 6974–6980 (2012).
[Crossref]

2011 (2)

Z. F. Wang, Y. H. Wang, Y. Z. Li, and H. J. Zhang, “Near-infrared quantum cutting in Tb3+, Yb3+ co-doped calcium tungstate via second-order downconversion,” J. Mater. Res. 26, 693–696 (2011).
[Crossref]

Z. W. Yang, K. Zhu, Z. G. Song, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Energy transfer and photoluminescence modification in Yb–Er–Tm triply doped Y2Ti2O7 upconversion inverse opal,” Appl. Opt. 50, 287–290 (2011).
[Crossref]

2010 (3)

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum cutting in Tm3+/Yb3+ -codoped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc. 93, 654–657 (2010).
[Crossref]

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B 81, 155112 (2010).
[Crossref]

Y. Katayama and S. Tanabe, “Near infrared downconversion in Pr3+–Yb3+ codoped oxyfluoride glass ceramics,” Opt. Mater. 33, 176–179 (2010).

2009 (4)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21, 3073–3077 (2009).
[Crossref]

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+: TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C 113, 6406–6410 (2009).
[Crossref]

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. 43, 6616–6618 (2009).

L. Xie, Y. Wang, and H. Zhang, “Near-infrared quantum cutting in YPO4: Yb3+, Tm3+ via cooperative energy transfer,” Appl. Phys. Lett. 94, 061905 (2009).
[Crossref]

2008 (4)

Z. W. Yang, J. Zhou, X. G. Huang, G. Yang, Q. Xie, L. Sun, B. Li, and L. Li, “Photonic band gap and photoluminescence properties of LaPO4:Tb inverse opal,” Chem. Phys. Lett. 455, 55–58 (2008).
[Crossref]

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16, 8989–8994 (2008).
[Crossref]

X. Liu, Y. Qiao, G. Dong, S. Ye, B. Zhu, G. Lakshminarayana, D. Chen, and J. Qiu, “Cooperative downconversion in Yb3+-RE3+ (RE = Tm or Pr) codoped lanthanum borogermanate glasses,” Opt. Lett. 33, 2858–2860 (2008).
[Crossref]

S. Ye, B. Zhu, J. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92, 141112 (2008).
[Crossref]

2007 (2)

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, “Concentration-dependent near-infrared quantum cutting in GdBO3:Tb3+,Yb3+ nanophosphors,” Appl. Phys. Lett. 90, 061914 (2007).
[Crossref]

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+, Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett. 91, 051903 (2007).
[Crossref]

2006 (1)

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: down-conversion,” Sol. Energy Mater. Sol. Cells 90, 1189–1207 (2006).

2005 (1)

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B 71, 014119 (2005).
[Crossref]

2003 (1)

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64, 841–846 (2003).
[Crossref]

2002 (2)

X. H. Wang, R. Z. Wang, B. Y. Gu, and G. Z. Yang, “Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps,” Phys. Rev. Lett. 88, 093902 (2002).
[Crossref]

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92, 1668–1674 (2002).
[Crossref]

2000 (1)

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76, 3513–3515 (2000).
[Crossref]

1994 (1)

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[Crossref]

1993 (1)

R. F. Nabiev, P. Yeh, and J. J. Sanchez-Mondragon, “Dynamics of the spontaneous emission of an atom into the photon-density-of-states gap: solvable quantum-electrodynamical model,” Phys. Rev. A 47, 3380–3384 (1993).
[Crossref]

1987 (2)

E. Yablonovitch, “Spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref]

Aarts, L.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21, 3073–3077 (2009).
[Crossref]

Buddhudu, S.

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76, 3513–3515 (2000).
[Crossref]

Chen, C.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. 43, 6616–6618 (2009).

Chen, D.

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+: TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C 113, 6406–6410 (2009).
[Crossref]

X. Liu, Y. Qiao, G. Dong, S. Ye, B. Zhu, G. Lakshminarayana, D. Chen, and J. Qiu, “Cooperative downconversion in Yb3+-RE3+ (RE = Tm or Pr) codoped lanthanum borogermanate glasses,” Opt. Lett. 33, 2858–2860 (2008).
[Crossref]

Chen, D. P.

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum cutting in Tm3+/Yb3+ -codoped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc. 93, 654–657 (2010).
[Crossref]

Chen, G. R.

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum cutting in Tm3+/Yb3+ -codoped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc. 93, 654–657 (2010).
[Crossref]

Chen, J.

S. Ye, B. Zhu, J. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92, 141112 (2008).
[Crossref]

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16, 8989–8994 (2008).
[Crossref]

Chen, X. Y.

W. Zheng, H. M. Zhu, R. F. Li, D. T. Tu, Y. S. Liu, W. Q. Luo, and X. Y. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+, Yb3+ phosphors,” Phys. Chem. Chem. Phys. 14, 6974–6980 (2012).
[Crossref]

Cheng, Y. H.

G. C. Jiang, X. T. Wei, Y. H. Cheng, C. K. Duan, and M. Yin, “Broadband downconversion in YVO4:Tm3+, Yb3+ phosphors,” J. Rare Earths 31, 27–31 (2013)
[Crossref]

den Hertog, M.

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B 71, 014119 (2005).
[Crossref]

Dong, G.

Duan, C. K.

G. C. Jiang, X. T. Wei, Y. H. Cheng, C. K. Duan, and M. Yin, “Broadband downconversion in YVO4:Tm3+, Yb3+ phosphors,” J. Rare Earths 31, 27–31 (2013)
[Crossref]

Green, M. A.

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92, 1668–1674 (2002).
[Crossref]

Gu, B. Y.

X. H. Wang, R. Z. Wang, B. Y. Gu, and G. Z. Yang, “Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps,” Phys. Rev. Lett. 88, 093902 (2002).
[Crossref]

Huang, P.

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+: TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C 113, 6406–6410 (2009).
[Crossref]

Huang, X. G.

Z. W. Yang, J. Zhou, X. G. Huang, G. Yang, Q. Xie, L. Sun, B. Li, and L. Li, “Photonic band gap and photoluminescence properties of LaPO4:Tb inverse opal,” Chem. Phys. Lett. 455, 55–58 (2008).
[Crossref]

Ji, X. H.

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, “Concentration-dependent near-infrared quantum cutting in GdBO3:Tb3+,Yb3+ nanophosphors,” Appl. Phys. Lett. 90, 061914 (2007).
[Crossref]

Jiang, G. C.

G. C. Jiang, X. T. Wei, Y. H. Cheng, C. K. Duan, and M. Yin, “Broadband downconversion in YVO4:Tm3+, Yb3+ phosphors,” J. Rare Earths 31, 27–31 (2013)
[Crossref]

Jiang, Z. H.

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+, Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett. 91, 051903 (2007).
[Crossref]

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, “Concentration-dependent near-infrared quantum cutting in GdBO3:Tb3+,Yb3+ nanophosphors,” Appl. Phys. Lett. 90, 061914 (2007).
[Crossref]

John, S.

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[Crossref]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref]

Jose, G.

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64, 841–846 (2003).
[Crossref]

Kam, C. H.

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76, 3513–3515 (2000).
[Crossref]

Katayama, Y.

Y. Katayama and S. Tanabe, “Near infrared downconversion in Pr3+–Yb3+ codoped oxyfluoride glass ceramics,” Opt. Mater. 33, 176–179 (2010).

Kox, M.

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B 71, 014119 (2005).
[Crossref]

Lakshminarayana, G.

Lam, Y. L.

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76, 3513–3515 (2000).
[Crossref]

Li, B.

Z. W. Yang, J. Zhou, X. G. Huang, G. Yang, Q. Xie, L. Sun, B. Li, and L. Li, “Photonic band gap and photoluminescence properties of LaPO4:Tb inverse opal,” Chem. Phys. Lett. 455, 55–58 (2008).
[Crossref]

Li, K. Y.

K. Y. Li, L. Y. Liu, R. Z. Wang, S. G. Xiao, H. Zhou, and H. Yan, “Broadband sensitization of downconversion phosphor YPO4 by optimizing TiO2 substitution in host lattice co-doped with Pr3+-Yb3+ ion-couple,” J. Appl. Phys. 115, 123103 (2014).
[Crossref]

Li, L.

Z. W. Yang, J. Zhou, X. G. Huang, G. Yang, Q. Xie, L. Sun, B. Li, and L. Li, “Photonic band gap and photoluminescence properties of LaPO4:Tb inverse opal,” Chem. Phys. Lett. 455, 55–58 (2008).
[Crossref]

Li, L. L.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. 43, 6616–6618 (2009).

Li, R. F.

W. Zheng, H. M. Zhu, R. F. Li, D. T. Tu, Y. S. Liu, W. Q. Luo, and X. Y. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+, Yb3+ phosphors,” Phys. Chem. Chem. Phys. 14, 6974–6980 (2012).
[Crossref]

Li, Y. Z.

Z. F. Wang, Y. H. Wang, Y. Z. Li, and H. J. Zhang, “Near-infrared quantum cutting in Tb3+, Yb3+ co-doped calcium tungstate via second-order downconversion,” J. Mater. Res. 26, 693–696 (2011).
[Crossref]

Li, Z. X.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. 43, 6616–6618 (2009).

Liu, L. Y.

K. Y. Li, L. Y. Liu, R. Z. Wang, S. G. Xiao, H. Zhou, and H. Yan, “Broadband sensitization of downconversion phosphor YPO4 by optimizing TiO2 substitution in host lattice co-doped with Pr3+-Yb3+ ion-couple,” J. Appl. Phys. 115, 123103 (2014).
[Crossref]

Liu, X.

Liu, X. F.

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum cutting in Tm3+/Yb3+ -codoped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc. 93, 654–657 (2010).
[Crossref]

Liu, Y. S.

W. Zheng, H. M. Zhu, R. F. Li, D. T. Tu, Y. S. Liu, W. Q. Luo, and X. Y. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+, Yb3+ phosphors,” Phys. Chem. Chem. Phys. 14, 6974–6980 (2012).
[Crossref]

Luo, J.

S. Ye, B. Zhu, J. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92, 141112 (2008).
[Crossref]

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16, 8989–8994 (2008).
[Crossref]

Luo, W. Q.

W. Zheng, H. M. Zhu, R. F. Li, D. T. Tu, Y. S. Liu, W. Q. Luo, and X. Y. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+, Yb3+ phosphors,” Phys. Chem. Chem. Phys. 14, 6974–6980 (2012).
[Crossref]

Meijerink, A.

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B 81, 155112 (2010).
[Crossref]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21, 3073–3077 (2009).
[Crossref]

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B 71, 014119 (2005).
[Crossref]

Nabiev, R. F.

R. F. Nabiev, P. Yeh, and J. J. Sanchez-Mondragon, “Dynamics of the spontaneous emission of an atom into the photon-density-of-states gap: solvable quantum-electrodynamical model,” Phys. Rev. A 47, 3380–3384 (1993).
[Crossref]

Ng, S. L.

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76, 3513–3515 (2000).
[Crossref]

Paulose, P. I.

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64, 841–846 (2003).
[Crossref]

Qiao, Y.

Qiu, J.

Qiu, J. B.

Qiu, J. R.

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum cutting in Tm3+/Yb3+ -codoped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc. 93, 654–657 (2010).
[Crossref]

S. Ye, B. Zhu, J. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92, 141112 (2008).
[Crossref]

Quang, T.

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[Crossref]

Reid, M. F.

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B 81, 155112 (2010).
[Crossref]

Richards, B. S.

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: down-conversion,” Sol. Energy Mater. Sol. Cells 90, 1189–1207 (2006).

Sanchez-Mondragon, J. J.

R. F. Nabiev, P. Yeh, and J. J. Sanchez-Mondragon, “Dynamics of the spontaneous emission of an atom into the photon-density-of-states gap: solvable quantum-electrodynamical model,” Phys. Rev. A 47, 3380–3384 (1993).
[Crossref]

Scheidelaar, S.

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B 81, 155112 (2010).
[Crossref]

Song, Z. G.

Sun, L.

Z. W. Yang, J. Zhou, X. G. Huang, G. Yang, Q. Xie, L. Sun, B. Li, and L. Li, “Photonic band gap and photoluminescence properties of LaPO4:Tb inverse opal,” Chem. Phys. Lett. 455, 55–58 (2008).
[Crossref]

Sun, L. D.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. 43, 6616–6618 (2009).

Tanabe, S.

Y. Katayama and S. Tanabe, “Near infrared downconversion in Pr3+–Yb3+ codoped oxyfluoride glass ceramics,” Opt. Mater. 33, 176–179 (2010).

Thomas, V.

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64, 841–846 (2003).
[Crossref]

Trupke, T.

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92, 1668–1674 (2002).
[Crossref]

Tu, D. T.

W. Zheng, H. M. Zhu, R. F. Li, D. T. Tu, Y. S. Liu, W. Q. Luo, and X. Y. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+, Yb3+ phosphors,” Phys. Chem. Chem. Phys. 14, 6974–6980 (2012).
[Crossref]

Unnikrishnan, N. V.

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64, 841–846 (2003).
[Crossref]

van der Eerden, J.

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B 71, 014119 (2005).
[Crossref]

van der Ende, B. M.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21, 3073–3077 (2009).
[Crossref]

van Wijngaarden, J. T.

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B 81, 155112 (2010).
[Crossref]

Vergeer, P.

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B 71, 014119 (2005).
[Crossref]

Vlugt, T.

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B 71, 014119 (2005).
[Crossref]

Vlugt, T. J. H.

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B 81, 155112 (2010).
[Crossref]

Wang, R. Z.

K. Y. Li, L. Y. Liu, R. Z. Wang, S. G. Xiao, H. Zhou, and H. Yan, “Broadband sensitization of downconversion phosphor YPO4 by optimizing TiO2 substitution in host lattice co-doped with Pr3+-Yb3+ ion-couple,” J. Appl. Phys. 115, 123103 (2014).
[Crossref]

X. H. Wang, R. Z. Wang, B. Y. Gu, and G. Z. Yang, “Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps,” Phys. Rev. Lett. 88, 093902 (2002).
[Crossref]

Wang, X. H.

X. H. Wang, R. Z. Wang, B. Y. Gu, and G. Z. Yang, “Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps,” Phys. Rev. Lett. 88, 093902 (2002).
[Crossref]

Wang, Y.

L. Xie, Y. Wang, and H. Zhang, “Near-infrared quantum cutting in YPO4: Yb3+, Tm3+ via cooperative energy transfer,” Appl. Phys. Lett. 94, 061905 (2009).
[Crossref]

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+: TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C 113, 6406–6410 (2009).
[Crossref]

Wang, Y. H.

Z. F. Wang, Y. H. Wang, Y. Z. Li, and H. J. Zhang, “Near-infrared quantum cutting in Tb3+, Yb3+ co-doped calcium tungstate via second-order downconversion,” J. Mater. Res. 26, 693–696 (2011).
[Crossref]

Wang, Z. F.

Z. F. Wang, Y. H. Wang, Y. Z. Li, and H. J. Zhang, “Near-infrared quantum cutting in Tb3+, Yb3+ co-doped calcium tungstate via second-order downconversion,” J. Mater. Res. 26, 693–696 (2011).
[Crossref]

Warrier, M. K. R.

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64, 841–846 (2003).
[Crossref]

Wei, X. T.

G. C. Jiang, X. T. Wei, Y. H. Cheng, C. K. Duan, and M. Yin, “Broadband downconversion in YVO4:Tm3+, Yb3+ phosphors,” J. Rare Earths 31, 27–31 (2013)
[Crossref]

Weng, F.

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+: TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C 113, 6406–6410 (2009).
[Crossref]

Wurfel, P.

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92, 1668–1674 (2002).
[Crossref]

Xiao, S. G.

K. Y. Li, L. Y. Liu, R. Z. Wang, S. G. Xiao, H. Zhou, and H. Yan, “Broadband sensitization of downconversion phosphor YPO4 by optimizing TiO2 substitution in host lattice co-doped with Pr3+-Yb3+ ion-couple,” J. Appl. Phys. 115, 123103 (2014).
[Crossref]

Xie, L.

L. Xie, Y. Wang, and H. Zhang, “Near-infrared quantum cutting in YPO4: Yb3+, Tm3+ via cooperative energy transfer,” Appl. Phys. Lett. 94, 061905 (2009).
[Crossref]

Xie, Q.

Z. W. Yang, J. Zhou, X. G. Huang, G. Yang, Q. Xie, L. Sun, B. Li, and L. Li, “Photonic band gap and photoluminescence properties of LaPO4:Tb inverse opal,” Chem. Phys. Lett. 455, 55–58 (2008).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

Yan, C. H.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. 43, 6616–6618 (2009).

Yan, H.

K. Y. Li, L. Y. Liu, R. Z. Wang, S. G. Xiao, H. Zhou, and H. Yan, “Broadband sensitization of downconversion phosphor YPO4 by optimizing TiO2 substitution in host lattice co-doped with Pr3+-Yb3+ ion-couple,” J. Appl. Phys. 115, 123103 (2014).
[Crossref]

Yang, C. H.

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, “Concentration-dependent near-infrared quantum cutting in GdBO3:Tb3+,Yb3+ nanophosphors,” Appl. Phys. Lett. 90, 061914 (2007).
[Crossref]

Yang, G.

Z. W. Yang, J. Zhou, X. G. Huang, G. Yang, Q. Xie, L. Sun, B. Li, and L. Li, “Photonic band gap and photoluminescence properties of LaPO4:Tb inverse opal,” Chem. Phys. Lett. 455, 55–58 (2008).
[Crossref]

Yang, G. F.

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+, Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett. 91, 051903 (2007).
[Crossref]

Yang, G. Z.

X. H. Wang, R. Z. Wang, B. Y. Gu, and G. Z. Yang, “Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps,” Phys. Rev. Lett. 88, 093902 (2002).
[Crossref]

Yang, Z. W.

Z. W. Yang, K. Zhu, Z. G. Song, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Energy transfer and photoluminescence modification in Yb–Er–Tm triply doped Y2Ti2O7 upconversion inverse opal,” Appl. Opt. 50, 287–290 (2011).
[Crossref]

Z. W. Yang, J. Zhou, X. G. Huang, G. Yang, Q. Xie, L. Sun, B. Li, and L. Li, “Photonic band gap and photoluminescence properties of LaPO4:Tb inverse opal,” Chem. Phys. Lett. 455, 55–58 (2008).
[Crossref]

Ye, S.

Yeh, P.

R. F. Nabiev, P. Yeh, and J. J. Sanchez-Mondragon, “Dynamics of the spontaneous emission of an atom into the photon-density-of-states gap: solvable quantum-electrodynamical model,” Phys. Rev. A 47, 3380–3384 (1993).
[Crossref]

Yin, M.

G. C. Jiang, X. T. Wei, Y. H. Cheng, C. K. Duan, and M. Yin, “Broadband downconversion in YVO4:Tm3+, Yb3+ phosphors,” J. Rare Earths 31, 27–31 (2013)
[Crossref]

Yin, Z. Y.

Yu, Y.

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+: TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C 113, 6406–6410 (2009).
[Crossref]

Yuan, Q.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. 43, 6616–6618 (2009).

Zhang, G.

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum cutting in Tm3+/Yb3+ -codoped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc. 93, 654–657 (2010).
[Crossref]

Zhang, H.

L. Xie, Y. Wang, and H. Zhang, “Near-infrared quantum cutting in YPO4: Yb3+, Tm3+ via cooperative energy transfer,” Appl. Phys. Lett. 94, 061905 (2009).
[Crossref]

Zhang, H. J.

Z. F. Wang, Y. H. Wang, Y. Z. Li, and H. J. Zhang, “Near-infrared quantum cutting in Tb3+, Yb3+ co-doped calcium tungstate via second-order downconversion,” J. Mater. Res. 26, 693–696 (2011).
[Crossref]

Zhang, Q.

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum cutting in Tm3+/Yb3+ -codoped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc. 93, 654–657 (2010).
[Crossref]

Zhang, Q. Y.

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+, Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett. 91, 051903 (2007).
[Crossref]

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, “Concentration-dependent near-infrared quantum cutting in GdBO3:Tb3+,Yb3+ nanophosphors,” Appl. Phys. Lett. 90, 061914 (2007).
[Crossref]

Zheng, W.

W. Zheng, H. M. Zhu, R. F. Li, D. T. Tu, Y. S. Liu, W. Q. Luo, and X. Y. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+, Yb3+ phosphors,” Phys. Chem. Chem. Phys. 14, 6974–6980 (2012).
[Crossref]

Zhou, D. C.

Zhou, H.

K. Y. Li, L. Y. Liu, R. Z. Wang, S. G. Xiao, H. Zhou, and H. Yan, “Broadband sensitization of downconversion phosphor YPO4 by optimizing TiO2 substitution in host lattice co-doped with Pr3+-Yb3+ ion-couple,” J. Appl. Phys. 115, 123103 (2014).
[Crossref]

Zhou, H. P.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. 43, 6616–6618 (2009).

Zhou, J.

Z. W. Yang, J. Zhou, X. G. Huang, G. Yang, Q. Xie, L. Sun, B. Li, and L. Li, “Photonic band gap and photoluminescence properties of LaPO4:Tb inverse opal,” Chem. Phys. Lett. 455, 55–58 (2008).
[Crossref]

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76, 3513–3515 (2000).
[Crossref]

Zhou, Y.

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76, 3513–3515 (2000).
[Crossref]

Zhu, B.

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum cutting in Tm3+/Yb3+ -codoped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc. 93, 654–657 (2010).
[Crossref]

S. Ye, B. Zhu, J. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92, 141112 (2008).
[Crossref]

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16, 8989–8994 (2008).
[Crossref]

X. Liu, Y. Qiao, G. Dong, S. Ye, B. Zhu, G. Lakshminarayana, D. Chen, and J. Qiu, “Cooperative downconversion in Yb3+-RE3+ (RE = Tm or Pr) codoped lanthanum borogermanate glasses,” Opt. Lett. 33, 2858–2860 (2008).
[Crossref]

Zhu, H. M.

W. Zheng, H. M. Zhu, R. F. Li, D. T. Tu, Y. S. Liu, W. Q. Luo, and X. Y. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+, Yb3+ phosphors,” Phys. Chem. Chem. Phys. 14, 6974–6980 (2012).
[Crossref]

Zhu, K.

Zhuang, Y. X.

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum cutting in Tm3+/Yb3+ -codoped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc. 93, 654–657 (2010).
[Crossref]

Adv. Mater. (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21, 3073–3077 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76, 3513–3515 (2000).
[Crossref]

L. Xie, Y. Wang, and H. Zhang, “Near-infrared quantum cutting in YPO4: Yb3+, Tm3+ via cooperative energy transfer,” Appl. Phys. Lett. 94, 061905 (2009).
[Crossref]

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, “Concentration-dependent near-infrared quantum cutting in GdBO3:Tb3+,Yb3+ nanophosphors,” Appl. Phys. Lett. 90, 061914 (2007).
[Crossref]

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+, Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett. 91, 051903 (2007).
[Crossref]

S. Ye, B. Zhu, J. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92, 141112 (2008).
[Crossref]

Chem. Commun. (1)

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. 43, 6616–6618 (2009).

Chem. Phys. Lett. (1)

Z. W. Yang, J. Zhou, X. G. Huang, G. Yang, Q. Xie, L. Sun, B. Li, and L. Li, “Photonic band gap and photoluminescence properties of LaPO4:Tb inverse opal,” Chem. Phys. Lett. 455, 55–58 (2008).
[Crossref]

J. Am. Ceram. Soc. (1)

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum cutting in Tm3+/Yb3+ -codoped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc. 93, 654–657 (2010).
[Crossref]

J. Appl. Phys. (2)

K. Y. Li, L. Y. Liu, R. Z. Wang, S. G. Xiao, H. Zhou, and H. Yan, “Broadband sensitization of downconversion phosphor YPO4 by optimizing TiO2 substitution in host lattice co-doped with Pr3+-Yb3+ ion-couple,” J. Appl. Phys. 115, 123103 (2014).
[Crossref]

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92, 1668–1674 (2002).
[Crossref]

J. Mater. Res. (1)

Z. F. Wang, Y. H. Wang, Y. Z. Li, and H. J. Zhang, “Near-infrared quantum cutting in Tb3+, Yb3+ co-doped calcium tungstate via second-order downconversion,” J. Mater. Res. 26, 693–696 (2011).
[Crossref]

J. Phys. Chem. C (1)

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+: TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C 113, 6406–6410 (2009).
[Crossref]

J. Phys. Chem. Solids (1)

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64, 841–846 (2003).
[Crossref]

J. Rare Earths (1)

G. C. Jiang, X. T. Wei, Y. H. Cheng, C. K. Duan, and M. Yin, “Broadband downconversion in YVO4:Tm3+, Yb3+ phosphors,” J. Rare Earths 31, 27–31 (2013)
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

Y. Katayama and S. Tanabe, “Near infrared downconversion in Pr3+–Yb3+ codoped oxyfluoride glass ceramics,” Opt. Mater. 33, 176–179 (2010).

Phys. Chem. Chem. Phys. (1)

W. Zheng, H. M. Zhu, R. F. Li, D. T. Tu, Y. S. Liu, W. Q. Luo, and X. Y. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+, Yb3+ phosphors,” Phys. Chem. Chem. Phys. 14, 6974–6980 (2012).
[Crossref]

Phys. Rev. A (2)

R. F. Nabiev, P. Yeh, and J. J. Sanchez-Mondragon, “Dynamics of the spontaneous emission of an atom into the photon-density-of-states gap: solvable quantum-electrodynamical model,” Phys. Rev. A 47, 3380–3384 (1993).
[Crossref]

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[Crossref]

Phys. Rev. B (2)

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B 81, 155112 (2010).
[Crossref]

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B 71, 014119 (2005).
[Crossref]

Phys. Rev. Lett. (3)

E. Yablonovitch, “Spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref]

X. H. Wang, R. Z. Wang, B. Y. Gu, and G. Z. Yang, “Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps,” Phys. Rev. Lett. 88, 093902 (2002).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: down-conversion,” Sol. Energy Mater. Sol. Cells 90, 1189–1207 (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) and (b) SEM images of unitary opal templates constructed with polystyrene microspheres 490 nm in diameter and binary templates constructed with polystyrene microspheres 490 nm and 360 nm in diameter, respectively. (c) and (d) SEM images of IPC-II and the reference sample, respectively.
Fig. 2.
Fig. 2. XRD patterns of IPC-I, IPC-II, and the RS.
Fig. 3.
Fig. 3. Transmittance spectra of IPC-I, IPC-II, and the RS.
Fig. 4.
Fig. 4. Visible emission spectra and quantum cutting emission spectra of IPC-I, IPC-II, and the RS under 480 nm excitation.
Fig. 5.
Fig. 5. Photoluminescence decays from G 4 1 of Tm 3 + in singly doped Y 0.99 Tm 0.01 PO 4 , the RS, and IPC-II. The excitation and emission wavelengths are 480 nm and 650 nm, respectively.
Fig. 6.
Fig. 6. Simplified energy level scheme of the quantum cutting emission mechanism in photonic crystals. The photonic bandgap in the photonic crystals is at 650 nm.

Metrics