Abstract

A type of runway centerline light is designed for the application of light-emitting diode (LED) aeronautical illumination. A total internal reflection collimating lens and an integrated prism are designed, respectively, to meet the intensity distribution of International Convention on Civil Aviation (ICAO) regulations. The principle of geometric optics is adopted to construct the free-form surfaces of a collimating lens, which is simple. Different variations are used in the process of free-form surface calculation. An integrated prism with a diffuser is used for uniformly diffusing rays and then decreasing the central maximum intensity to avoid glare. The structure of the optical system is compact. Computer simulation results show that an optical efficiency of 79.2% is achieved for a 1mm×1mm LED source. Tolerance analysis is carried out to determine tolerance limits of manufacture and installation errors. To verify the optical performance of the proposed runway centerline light, the practical illumination distribution is measured by using Cree XP-E2 LED, which can comply with ICAO regulations.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of compact and smooth free-form optical system with uniform illuminance for LED source

Yi Luo, Zexin Feng, Yanjun Han, and Hongtao Li
Opt. Express 18(9) 9055-9063 (2010)

Design of a free-form lens for LED light with high efficiency and uniform illumination

Nguyen Doan Quoc Anh, Min-Feng Lai, Hsin-Yi Ma, and Hsiao-Yi Lee
Appl. Opt. 53(29) H140-H145 (2014)

Freeform illumination lens design using composite ray mapping

Donglin Ma, Zexin Feng, and Rongguang Liang
Appl. Opt. 54(3) 498-503 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription