Abstract

In the present work, laser-induced breakdown spectroscopy (LIBS) was applied to detect concentrations of chromium and nickel in aqueous solution in the form of matrix conversion using plant fiber spunlaced nonwovens as a solid-phase support, which can effectively avoid the inherent difficulties such as splashing, a quenching effect, and a shorter plasma lifetime during the liquid LIBS analysis. Drops of the sample solution were transferred to the plant fiber spunlaced nonwovens surface and uniformly diffused from the center to the whole area of the substrate. Owing to good hydrophilicity, the plant fiber spunlaced nonwovens can hold more of the liquid sample, and the surface of this material never wrinkles after being dried in a drying oven, which can effectively reduce the deviation during the LIBS analysis. In addition, the plant fiber spunlaced nonwovens used in the present work are relatively convenient and low cost. Also, the procedure of analysis was simple and fast, which are the unique features of LIBS technology. Therefore, this method has potential applications for practical and in situ analyses. To achieve sensitive elemental detection, the optimal delay time in this experiment was investigated. Under the optimized condition, the limits of detection for Cr and Ni are 0.7 and 5.7μg·mL1, respectively. The results obtained in the present study show that the matrix conversion method is a feasible option for analyzing heavy metals in aqueous solutions by LIBS technology.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Emission enhancement of laser-induced breakdown spectroscopy for aqueous sample analysis based on Au nanoparticles and solid-phase substrate

Xu Wen, Qingyu Lin, Guanghui Niu, Qi Shi, and Yixiang Duan
Appl. Opt. 55(24) 6706-6712 (2016)

Highly concentrated, ring-shaped phase conversion laser-induced breakdown spectroscopy technology for liquid sample analysis

Qingyu Lin, Zhimei Wei, Hongli Guo, Shuai Wang, Guangmeng Guo, Zhi Zhang, and Yixiang Duan
Appl. Opt. 56(17) 5092-5098 (2017)

Analytical-performance improvement of aqueous solution by chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy

Xinyan Yang, Xiangyou Li, Zhifeng Cui, Zhongqi Hao, Yongfeng Lu, Jingchun Huang, Guanxin Yao, and Xiaoli Wang
Appl. Opt. 57(25) 7135-7139 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription