Abstract

We present the empirical mode decomposition profilometry (EMDP) for the analysis of fringe projection profilometry (FPP) images. It is based on an iterative filter, using empirical mode decomposition, which is free of spatial filtering and adapted for surfaces characterized by a broadband spectrum of deformation. Its performances are compared to Fourier transform profilometry, the benchmark of FPP. We show both numerically and experimentally that using EMDP improves strongly the profilometry small-scale capabilities. Moreover, the height reconstruction distortion is much lower: the reconstructed height field is now both spectrally and statistically accurate. EMDP is thus particularly suited to quantitative experiments.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition

Sikun Li, Xianyu Su, Wenjing Chen, and Liqun Xiang
J. Opt. Soc. Am. A 26(5) 1195-1201 (2009)

Fringe-projection profilometry based on two-dimensional empirical mode decomposition

Suzhen Zheng and Yiping Cao
Appl. Opt. 52(31) 7648-7653 (2013)

Snap-shot profilometry with the Empirical Mode Decomposition and a 3-layer color sensor

Sébastien Equis, Raik Schnabel, and Pierre Jacquot
Opt. Express 19(2) 1284-1290 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription