Abstract

A new type of compact three-port circulator with flat-top transmission band (FTTB) in a two-dimensional photonic crystal has been proposed, through coupling the cascaded magneto-optical resonance cavities to waveguides. The coupled-mode theory is applied to investigate the coupled structure and analyze the condition to achieve FTTB. According to the theoretical analysis, the structure is further optimized to ensure that the condition for achieving FTTB can be satisfied for both cavity–cavity coupling and cavity–waveguide coupling. Through the finite-element method, it is demonstrated that the design can realize a high quality, nonreciprocal circulating propagation of waves with an insertion loss of 0.023 dB and an isolation of 23.3 dB, covering a wide range of operation frequency. Such a wideband circulator has potential applications in large-scale integrated photonic circuits for guiding or isolating harmful optical reflections from load elements.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiport photonic crystal circulators created by cascading magneto-optical cavities

Qiong Wang, Zhengbiao Ouyang, and Qiang Liu
J. Opt. Soc. Am. B 28(4) 703-708 (2011)

Terahertz isolator based on nonreciprocal magneto-metasurface

Sai Chen, Fei Fan, Xianghui Wang, Pengfei Wu, Hui Zhang, and Shengjiang Chang
Opt. Express 23(2) 1015-1024 (2015)

Two-dimensional photonic-crystal-based double switch-divider

Victor Dmitriev and Leno Martins
Appl. Opt. 55(13) 3676-3680 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription