Abstract

A compact scanning LADAR system based on a fiber-coupled, monostatic configuration which transmits (TX) and receives (RX) through the same aperture has been developed. A small piezo-electric stripe actuator was used to resonantly vibrate a fiber cantilever tip and scan the transmitted near-single-mode optical beam and the cladding mode receiving aperture. When compared to conventional bi-static systems with polygon, galvo, or Risley-prism beam scanners, the described system offers several advantages: the inherent alignment of the receiver field-of-view (FOV) relative to the TX beam angle, small size and weight, and power efficiency. Optical alignment of the system was maintained at all ranges since there is no parallax between the TX beam and the receiver FOV. A position-sensing detector (PSD) was used to sense the instantaneous fiber tip position. The Si PSD operated in a two-photon absorption mode to detect the transmitted 1.5 μm pulses. The prototype system collected 50,000 points per second with a 6° full scan angle and a 27 mm clear aperture/40 mm focal length TX/RX lens, had a range precision of 4.7 mm, and was operated at a maximum range of 26 m.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

16 November 2015: A correction was made to Fig. 10.


OSA Recommended Articles
Monostatic all-fiber rangefinder system

Jeffrey H. Leach, Stephen R. Chinn, Lew Goldberg, and Scott A. Mathews
Appl. Opt. 54(25) 7687-7692 (2015)

Coupling efficiencies for general-target-illumination ladar systems incorporating single-mode optical fiber receivers

Christopher D. Brewer, Bradley D. Duncan, Kenneth J. Barnard, and Edward A. Watson
J. Opt. Soc. Am. A 15(3) 736-747 (1998)

Forward-viewing resonant fiber-optic scanning endoscope of appropriate scanning speed for 3D OCT imaging

Li Huo, Jiefeng Xi, Yicong Wu, and Xingde Li
Opt. Express 18(14) 14375-14384 (2010)

References

  • View by:
  • |
  • |
  • |

  1. P. F. McManamon, “Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51, 060901 (2012).
    [Crossref]
  2. Laser Radar: Progress and Opportunities in Active Electro-Optical Sensing (The National Academies, 2014), http://www.nap.edu/catalog/18733/laser-radar-progress-and-opportunities-in-active-electro-optical-sensing .
  3. D. C. Carmer and L. M. Peterson, “Laser radar in robotics,” Proc. IEEE 84, 299–320 (1996).
    [Crossref]
  4. P. F. McManamon, G. Kamerman, and M. Huffaker, “A history of laser radar in the United States,” Proc. SPIE 7684, 76840T (2010).
  5. J. Savage, W. Harrington, R. A. McKinley, H. Burns, S. Braddom, and Z. Szoboszlay, “3D-LZ helicopter ladar imaging system,” Proc. SPIE 7684, 768407 (2010).
  6. W. C. Stone, M. Juberts, N. Dagalakis, J. Stone, J. Gorman, P. J. Bond, and A. L. Bement, “Performance analysis of next-generation LADAR for manufacturing, construction, and mobility,” (May, 2004).
  7. C. Ye and J. Borenstein, “Characterization of a 2D laser scanner for mobile robot obstacle negotiation,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2002), pp. 2512–2518.
  8. B. L. Stann, J. F. Dammann, M. M. Giza, P.-S. Jian, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).
  9. S. Chinn and L. Goldberg, “Compact fiber-based scanning laser detection and ranging system,” U.S. patent8,946,637 (3February, 2015).
  10. D. A. Roberts and R. R. Syms, “1D and 2D laser line scan generation using a fiber optic resonant scanner,” Proc. SPIE 4075, 62–73 (2000).
  11. M. Mokhtar and R. Syms, “Tailored fibre waveguides for precise two-axis Lissajous scanning,” Opt. Express 23, 20804–20811 (2015).
    [Crossref]
  12. Z. Li, Z. Yang, and L. Fu, “Scanning properties of a resonant fiber-optic piezoelectric scanner,” Rev. Sci. Instrum. 82, 123707 (2011).
    [Crossref]
  13. L. Huo, J. Xi, Y. Wu, and X. Li, “Forward-viewing resonant fiber-optic scanning endoscope of appropriate scanning speed for 3D OCT imaging,” Opt. Express 18, 14375–14384 (2010).
    [Crossref]
  14. X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29, 1763–1765 (2004).
    [Crossref]
  15. S. Moheimani, “Invited review article: accurate and fast nanopositioning with piezoelectric tube scanners: emerging trends and future challenges,” Rev. Sci. Instrum. 79, 071101 (2008).
    [Crossref]
  16. S. Moon, S.-W. Lee, M. Rubinstein, B. J. Wong, and Z. Chen, “Semi-resonant operation of a fiber-cantilever piezotube scanner for stable optical coherence tomography endoscope imaging,” Opt. Express 18, 21183–21197 (2010).
    [Crossref]
  17. “SiTek S2-03162D silicon PSD,” (2015), retrieved http://www.sitek.se .
  18. T. E. Dimmick, G. Kakarantzas, T. A. Birks, and P. St.J. Russell, “Carbon dioxide laser fabrication of fused-fiber couplers and tapers,” Appl. Opt. 38, 6845–6848 (1999).
    [Crossref]
  19. P. Cho, H. Anderson, R. Hatch, and P. Ramaswami, “Real-time 3D ladar imaging,” Proc. SPIE 6235, 62350G (2006).
  20. O. Kreylos, G. Bawden, and L. Kellogg, “Immersive visualization and analysis of LiDAR data,” in Advances in Visual Computing, G. Bebis, R. Boyle, B. Parvin, D. Koracin, P. Remagnino, F. Porikli, J. Peters, J. Klosowski, L. Arns, Y. Chun, T.-M. Rhyne, and L. Monroe, eds. (Springer, 2008), pp. 846–855.
  21. A. N. Vasile, L. J. Skelly, M. E. O’Brien, D. G. Fouche, R. M. Marino, R. Knowlton, M. J. Khan, and R. M. Heinrichs, “Advanced coincidence processing of 3D laser radar data,” in Advances in Visual Computing (Springer, 2012), pp. 382–393.

2015 (1)

2012 (1)

P. F. McManamon, “Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51, 060901 (2012).
[Crossref]

2011 (1)

Z. Li, Z. Yang, and L. Fu, “Scanning properties of a resonant fiber-optic piezoelectric scanner,” Rev. Sci. Instrum. 82, 123707 (2011).
[Crossref]

2010 (5)

L. Huo, J. Xi, Y. Wu, and X. Li, “Forward-viewing resonant fiber-optic scanning endoscope of appropriate scanning speed for 3D OCT imaging,” Opt. Express 18, 14375–14384 (2010).
[Crossref]

P. F. McManamon, G. Kamerman, and M. Huffaker, “A history of laser radar in the United States,” Proc. SPIE 7684, 76840T (2010).

J. Savage, W. Harrington, R. A. McKinley, H. Burns, S. Braddom, and Z. Szoboszlay, “3D-LZ helicopter ladar imaging system,” Proc. SPIE 7684, 768407 (2010).

B. L. Stann, J. F. Dammann, M. M. Giza, P.-S. Jian, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).

S. Moon, S.-W. Lee, M. Rubinstein, B. J. Wong, and Z. Chen, “Semi-resonant operation of a fiber-cantilever piezotube scanner for stable optical coherence tomography endoscope imaging,” Opt. Express 18, 21183–21197 (2010).
[Crossref]

2008 (1)

S. Moheimani, “Invited review article: accurate and fast nanopositioning with piezoelectric tube scanners: emerging trends and future challenges,” Rev. Sci. Instrum. 79, 071101 (2008).
[Crossref]

2006 (1)

P. Cho, H. Anderson, R. Hatch, and P. Ramaswami, “Real-time 3D ladar imaging,” Proc. SPIE 6235, 62350G (2006).

2004 (1)

2000 (1)

D. A. Roberts and R. R. Syms, “1D and 2D laser line scan generation using a fiber optic resonant scanner,” Proc. SPIE 4075, 62–73 (2000).

1999 (1)

1996 (1)

D. C. Carmer and L. M. Peterson, “Laser radar in robotics,” Proc. IEEE 84, 299–320 (1996).
[Crossref]

Anderson, H.

P. Cho, H. Anderson, R. Hatch, and P. Ramaswami, “Real-time 3D ladar imaging,” Proc. SPIE 6235, 62350G (2006).

Bawden, G.

O. Kreylos, G. Bawden, and L. Kellogg, “Immersive visualization and analysis of LiDAR data,” in Advances in Visual Computing, G. Bebis, R. Boyle, B. Parvin, D. Koracin, P. Remagnino, F. Porikli, J. Peters, J. Klosowski, L. Arns, Y. Chun, T.-M. Rhyne, and L. Monroe, eds. (Springer, 2008), pp. 846–855.

Bement, A. L.

W. C. Stone, M. Juberts, N. Dagalakis, J. Stone, J. Gorman, P. J. Bond, and A. L. Bement, “Performance analysis of next-generation LADAR for manufacturing, construction, and mobility,” (May, 2004).

Birks, T. A.

Bond, P. J.

W. C. Stone, M. Juberts, N. Dagalakis, J. Stone, J. Gorman, P. J. Bond, and A. L. Bement, “Performance analysis of next-generation LADAR for manufacturing, construction, and mobility,” (May, 2004).

Borenstein, J.

C. Ye and J. Borenstein, “Characterization of a 2D laser scanner for mobile robot obstacle negotiation,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2002), pp. 2512–2518.

Braddom, S.

J. Savage, W. Harrington, R. A. McKinley, H. Burns, S. Braddom, and Z. Szoboszlay, “3D-LZ helicopter ladar imaging system,” Proc. SPIE 7684, 768407 (2010).

Burns, H.

J. Savage, W. Harrington, R. A. McKinley, H. Burns, S. Braddom, and Z. Szoboszlay, “3D-LZ helicopter ladar imaging system,” Proc. SPIE 7684, 768407 (2010).

Carmer, D. C.

D. C. Carmer and L. M. Peterson, “Laser radar in robotics,” Proc. IEEE 84, 299–320 (1996).
[Crossref]

Chen, Y.

Chen, Z.

Chinn, S.

S. Chinn and L. Goldberg, “Compact fiber-based scanning laser detection and ranging system,” U.S. patent8,946,637 (3February, 2015).

Cho, P.

P. Cho, H. Anderson, R. Hatch, and P. Ramaswami, “Real-time 3D ladar imaging,” Proc. SPIE 6235, 62350G (2006).

Cobb, M. J.

Dagalakis, N.

W. C. Stone, M. Juberts, N. Dagalakis, J. Stone, J. Gorman, P. J. Bond, and A. L. Bement, “Performance analysis of next-generation LADAR for manufacturing, construction, and mobility,” (May, 2004).

Dammann, J. F.

B. L. Stann, J. F. Dammann, M. M. Giza, P.-S. Jian, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).

Dimmick, T. E.

Fouche, D. G.

A. N. Vasile, L. J. Skelly, M. E. O’Brien, D. G. Fouche, R. M. Marino, R. Knowlton, M. J. Khan, and R. M. Heinrichs, “Advanced coincidence processing of 3D laser radar data,” in Advances in Visual Computing (Springer, 2012), pp. 382–393.

Fu, L.

Z. Li, Z. Yang, and L. Fu, “Scanning properties of a resonant fiber-optic piezoelectric scanner,” Rev. Sci. Instrum. 82, 123707 (2011).
[Crossref]

Giza, M. M.

B. L. Stann, J. F. Dammann, M. M. Giza, P.-S. Jian, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).

Goldberg, L.

S. Chinn and L. Goldberg, “Compact fiber-based scanning laser detection and ranging system,” U.S. patent8,946,637 (3February, 2015).

Gorman, J.

W. C. Stone, M. Juberts, N. Dagalakis, J. Stone, J. Gorman, P. J. Bond, and A. L. Bement, “Performance analysis of next-generation LADAR for manufacturing, construction, and mobility,” (May, 2004).

Harrington, W.

J. Savage, W. Harrington, R. A. McKinley, H. Burns, S. Braddom, and Z. Szoboszlay, “3D-LZ helicopter ladar imaging system,” Proc. SPIE 7684, 768407 (2010).

Hatch, R.

P. Cho, H. Anderson, R. Hatch, and P. Ramaswami, “Real-time 3D ladar imaging,” Proc. SPIE 6235, 62350G (2006).

Heinrichs, R. M.

A. N. Vasile, L. J. Skelly, M. E. O’Brien, D. G. Fouche, R. M. Marino, R. Knowlton, M. J. Khan, and R. M. Heinrichs, “Advanced coincidence processing of 3D laser radar data,” in Advances in Visual Computing (Springer, 2012), pp. 382–393.

Huffaker, M.

P. F. McManamon, G. Kamerman, and M. Huffaker, “A history of laser radar in the United States,” Proc. SPIE 7684, 76840T (2010).

Huo, L.

Jian, P.-S.

B. L. Stann, J. F. Dammann, M. M. Giza, P.-S. Jian, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).

Juberts, M.

W. C. Stone, M. Juberts, N. Dagalakis, J. Stone, J. Gorman, P. J. Bond, and A. L. Bement, “Performance analysis of next-generation LADAR for manufacturing, construction, and mobility,” (May, 2004).

Kakarantzas, G.

Kamerman, G.

P. F. McManamon, G. Kamerman, and M. Huffaker, “A history of laser radar in the United States,” Proc. SPIE 7684, 76840T (2010).

Kellogg, L.

O. Kreylos, G. Bawden, and L. Kellogg, “Immersive visualization and analysis of LiDAR data,” in Advances in Visual Computing, G. Bebis, R. Boyle, B. Parvin, D. Koracin, P. Remagnino, F. Porikli, J. Peters, J. Klosowski, L. Arns, Y. Chun, T.-M. Rhyne, and L. Monroe, eds. (Springer, 2008), pp. 846–855.

Khan, M. J.

A. N. Vasile, L. J. Skelly, M. E. O’Brien, D. G. Fouche, R. M. Marino, R. Knowlton, M. J. Khan, and R. M. Heinrichs, “Advanced coincidence processing of 3D laser radar data,” in Advances in Visual Computing (Springer, 2012), pp. 382–393.

Kimmey, M. B.

Knowlton, R.

A. N. Vasile, L. J. Skelly, M. E. O’Brien, D. G. Fouche, R. M. Marino, R. Knowlton, M. J. Khan, and R. M. Heinrichs, “Advanced coincidence processing of 3D laser radar data,” in Advances in Visual Computing (Springer, 2012), pp. 382–393.

Kreylos, O.

O. Kreylos, G. Bawden, and L. Kellogg, “Immersive visualization and analysis of LiDAR data,” in Advances in Visual Computing, G. Bebis, R. Boyle, B. Parvin, D. Koracin, P. Remagnino, F. Porikli, J. Peters, J. Klosowski, L. Arns, Y. Chun, T.-M. Rhyne, and L. Monroe, eds. (Springer, 2008), pp. 846–855.

Lawler, W. B.

B. L. Stann, J. F. Dammann, M. M. Giza, P.-S. Jian, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).

Lee, S.-W.

Li, X.

Li, Z.

Z. Li, Z. Yang, and L. Fu, “Scanning properties of a resonant fiber-optic piezoelectric scanner,” Rev. Sci. Instrum. 82, 123707 (2011).
[Crossref]

Liu, X.

Marino, R. M.

A. N. Vasile, L. J. Skelly, M. E. O’Brien, D. G. Fouche, R. M. Marino, R. Knowlton, M. J. Khan, and R. M. Heinrichs, “Advanced coincidence processing of 3D laser radar data,” in Advances in Visual Computing (Springer, 2012), pp. 382–393.

McKinley, R. A.

J. Savage, W. Harrington, R. A. McKinley, H. Burns, S. Braddom, and Z. Szoboszlay, “3D-LZ helicopter ladar imaging system,” Proc. SPIE 7684, 768407 (2010).

McManamon, P. F.

P. F. McManamon, “Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51, 060901 (2012).
[Crossref]

P. F. McManamon, G. Kamerman, and M. Huffaker, “A history of laser radar in the United States,” Proc. SPIE 7684, 76840T (2010).

Moheimani, S.

S. Moheimani, “Invited review article: accurate and fast nanopositioning with piezoelectric tube scanners: emerging trends and future challenges,” Rev. Sci. Instrum. 79, 071101 (2008).
[Crossref]

Mokhtar, M.

Moon, S.

Nguyen, H. M.

B. L. Stann, J. F. Dammann, M. M. Giza, P.-S. Jian, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).

O’Brien, M. E.

A. N. Vasile, L. J. Skelly, M. E. O’Brien, D. G. Fouche, R. M. Marino, R. Knowlton, M. J. Khan, and R. M. Heinrichs, “Advanced coincidence processing of 3D laser radar data,” in Advances in Visual Computing (Springer, 2012), pp. 382–393.

Peterson, L. M.

D. C. Carmer and L. M. Peterson, “Laser radar in robotics,” Proc. IEEE 84, 299–320 (1996).
[Crossref]

Ramaswami, P.

P. Cho, H. Anderson, R. Hatch, and P. Ramaswami, “Real-time 3D ladar imaging,” Proc. SPIE 6235, 62350G (2006).

Roberts, D. A.

D. A. Roberts and R. R. Syms, “1D and 2D laser line scan generation using a fiber optic resonant scanner,” Proc. SPIE 4075, 62–73 (2000).

Rubinstein, M.

Russell, P. St.J.

Sadler, L. C.

B. L. Stann, J. F. Dammann, M. M. Giza, P.-S. Jian, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).

Savage, J.

J. Savage, W. Harrington, R. A. McKinley, H. Burns, S. Braddom, and Z. Szoboszlay, “3D-LZ helicopter ladar imaging system,” Proc. SPIE 7684, 768407 (2010).

Skelly, L. J.

A. N. Vasile, L. J. Skelly, M. E. O’Brien, D. G. Fouche, R. M. Marino, R. Knowlton, M. J. Khan, and R. M. Heinrichs, “Advanced coincidence processing of 3D laser radar data,” in Advances in Visual Computing (Springer, 2012), pp. 382–393.

Stann, B. L.

B. L. Stann, J. F. Dammann, M. M. Giza, P.-S. Jian, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).

Stone, J.

W. C. Stone, M. Juberts, N. Dagalakis, J. Stone, J. Gorman, P. J. Bond, and A. L. Bement, “Performance analysis of next-generation LADAR for manufacturing, construction, and mobility,” (May, 2004).

Stone, W. C.

W. C. Stone, M. Juberts, N. Dagalakis, J. Stone, J. Gorman, P. J. Bond, and A. L. Bement, “Performance analysis of next-generation LADAR for manufacturing, construction, and mobility,” (May, 2004).

Syms, R.

Syms, R. R.

D. A. Roberts and R. R. Syms, “1D and 2D laser line scan generation using a fiber optic resonant scanner,” Proc. SPIE 4075, 62–73 (2000).

Szoboszlay, Z.

J. Savage, W. Harrington, R. A. McKinley, H. Burns, S. Braddom, and Z. Szoboszlay, “3D-LZ helicopter ladar imaging system,” Proc. SPIE 7684, 768407 (2010).

Vasile, A. N.

A. N. Vasile, L. J. Skelly, M. E. O’Brien, D. G. Fouche, R. M. Marino, R. Knowlton, M. J. Khan, and R. M. Heinrichs, “Advanced coincidence processing of 3D laser radar data,” in Advances in Visual Computing (Springer, 2012), pp. 382–393.

Wong, B. J.

Wu, Y.

Xi, J.

Yang, Z.

Z. Li, Z. Yang, and L. Fu, “Scanning properties of a resonant fiber-optic piezoelectric scanner,” Rev. Sci. Instrum. 82, 123707 (2011).
[Crossref]

Ye, C.

C. Ye and J. Borenstein, “Characterization of a 2D laser scanner for mobile robot obstacle negotiation,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2002), pp. 2512–2518.

Appl. Opt. (1)

Opt. Eng. (1)

P. F. McManamon, “Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51, 060901 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Proc. IEEE (1)

D. C. Carmer and L. M. Peterson, “Laser radar in robotics,” Proc. IEEE 84, 299–320 (1996).
[Crossref]

Proc. SPIE (5)

P. F. McManamon, G. Kamerman, and M. Huffaker, “A history of laser radar in the United States,” Proc. SPIE 7684, 76840T (2010).

J. Savage, W. Harrington, R. A. McKinley, H. Burns, S. Braddom, and Z. Szoboszlay, “3D-LZ helicopter ladar imaging system,” Proc. SPIE 7684, 768407 (2010).

B. L. Stann, J. F. Dammann, M. M. Giza, P.-S. Jian, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, “MEMS-scanned ladar sensor for small ground robots,” Proc. SPIE 7684, 76841E (2010).

P. Cho, H. Anderson, R. Hatch, and P. Ramaswami, “Real-time 3D ladar imaging,” Proc. SPIE 6235, 62350G (2006).

D. A. Roberts and R. R. Syms, “1D and 2D laser line scan generation using a fiber optic resonant scanner,” Proc. SPIE 4075, 62–73 (2000).

Rev. Sci. Instrum. (2)

Z. Li, Z. Yang, and L. Fu, “Scanning properties of a resonant fiber-optic piezoelectric scanner,” Rev. Sci. Instrum. 82, 123707 (2011).
[Crossref]

S. Moheimani, “Invited review article: accurate and fast nanopositioning with piezoelectric tube scanners: emerging trends and future challenges,” Rev. Sci. Instrum. 79, 071101 (2008).
[Crossref]

Other (7)

“SiTek S2-03162D silicon PSD,” (2015), retrieved http://www.sitek.se .

O. Kreylos, G. Bawden, and L. Kellogg, “Immersive visualization and analysis of LiDAR data,” in Advances in Visual Computing, G. Bebis, R. Boyle, B. Parvin, D. Koracin, P. Remagnino, F. Porikli, J. Peters, J. Klosowski, L. Arns, Y. Chun, T.-M. Rhyne, and L. Monroe, eds. (Springer, 2008), pp. 846–855.

A. N. Vasile, L. J. Skelly, M. E. O’Brien, D. G. Fouche, R. M. Marino, R. Knowlton, M. J. Khan, and R. M. Heinrichs, “Advanced coincidence processing of 3D laser radar data,” in Advances in Visual Computing (Springer, 2012), pp. 382–393.

S. Chinn and L. Goldberg, “Compact fiber-based scanning laser detection and ranging system,” U.S. patent8,946,637 (3February, 2015).

Laser Radar: Progress and Opportunities in Active Electro-Optical Sensing (The National Academies, 2014), http://www.nap.edu/catalog/18733/laser-radar-progress-and-opportunities-in-active-electro-optical-sensing .

W. C. Stone, M. Juberts, N. Dagalakis, J. Stone, J. Gorman, P. J. Bond, and A. L. Bement, “Performance analysis of next-generation LADAR for manufacturing, construction, and mobility,” (May, 2004).

C. Ye and J. Borenstein, “Characterization of a 2D laser scanner for mobile robot obstacle negotiation,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2002), pp. 2512–2518.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. All-fiber scanning LADAR design.
Fig. 2.
Fig. 2. Image of the cleaved scanning fiber face.
Fig. 3.
Fig. 3. Fiber scanning assembly and picture of scanning fiber tip positioned close to the position PSD.
Fig. 4.
Fig. 4. Biaxial fiber oscillation model.
Fig. 5.
Fig. 5. 5 ° × 7 ° Lissajous scan pattern for (a) 400 ms camera exposure and (b) a normalized computer display of the PSD signals after 400 ms.
Fig. 6.
Fig. 6. 2D position sensing silicon detector for 1.5 μm pulses.
Fig. 7.
Fig. 7. Monostatic system multiplexer and transmitter/receiver.
Fig. 8.
Fig. 8. Model of the MUX power transfer.
Fig. 9.
Fig. 9. Normalized effect of cleave angle versus reflected light.
Fig. 10.
Fig. 10. 3D scanning (monostatic) LADAR point-cloud output at 8 m.
Fig. 11.
Fig. 11. 3D scanning (monostatic) LADAR output at 26 m. The left pedestal is the same used in the previous figure, and the right pedestal consists of four square foam slices, ranging from 7.6 cm ( 3 ) to 30.5 cm ( 12 ) wide, each 1 cm thick.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

θ = Δ x f .
position x = L 2 X 1 X 2 X 1 + X 2 , , position y = L 2 Y 1 Y 2 Y 1 + Y 2 , .

Metrics