Abstract

We present the generation of arbitrary order Bessel beams at 0.3 THz through the implementation of suitably designed axicons based on 3D printing technology. The helical axicons, which possess thickness gradients in both radial and azimuthal directions, can convert the incident Gaussian beam into a high-order Bessel beam with spiral phase structure. The evolution of the generated Bessel beams are characterized experimentally with a three-dimensional field scanner. Moreover, the topological charges carried by the high-order Bessel beams are determined by the fork-like interferograms. This 3D-printing-based Bessel beam generation technique is useful not only for THz imaging systems with zero-order Bessel beams but also for future orbital-angular-momentum-based THz free-space communication with higher-order Bessel beams.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of pseudo-Bessel beams at THz frequencies by use of binary axicons

Yanzhong Yu and Wenbin Dou
Opt. Express 17(2) 888-893 (2009)

Vectorial diffraction properties of THz vortex Bessel beams

Zhen Wu, Xinke Wang, Wenfeng Sun, Shengfei Feng, Peng Han, Jiasheng Ye, Yue Yu, and Yan Zhang
Opt. Express 26(2) 1506-1520 (2018)

Generating superpositions of higher–order Bessel beams

Ruslan Vasilyeu, Angela Dudley, Nikolai Khilo, and Andrew Forbes
Opt. Express 17(26) 23389-23395 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  2. J. Durnin, “Exact solutions for nondiffracting beams. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
    [Crossref]
  3. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005).
    [Crossref]
  4. S. Monk, J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, “The generation of Bessel beams at millimetre-wave frequencies by use of an axicon,” Opt. Commun. 170, 213–215 (1999).
    [Crossref]
  5. G. Ok, S.-W. Choi, K. H. Park, and H. S. Chun, “Foreign object detection by sub-terahertz quasi-Bessel beam imaging,” Sensors 13, 71–85 (2012).
    [Crossref]
  6. C. Liu, X. Wei, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Terahertz imaging system based on Bessel beams via 3D printed axicons at 100  GHz,” Proc. SPIE 9275, 92751Q (2014).
  7. Z. Zhang and T. Buma, “Terahertz imaging in dielectric media with quasi-Bessel beams,” Proc. SPIE 7938, 793806 (2011).
    [Crossref]
  8. A. Bitman, I. Moshe, and Z. Zalevsky, “Improving depth-of field in broadband THz beams using nondiffractive Bessel beams,” Opt. Lett. 37, 4164–4166 (2012).
    [Crossref]
  9. A. Bitman, I. Moshe, and Z. Zalevsky, “Broadband THz, extended depth of focus imaging based on step phase mask aided interferometry,” Opt. Commun. 309, 1–5 (2013).
    [Crossref]
  10. A. Bitman, S. Goldring, I. Moshe, and Z. Zalevsky, “Computed tomography using broadband Bessel THz beams and phase contrast,” Opt. Lett. 39, 1925–1928 (2014).
    [Crossref]
  11. J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592 (1954).
    [Crossref]
  12. I. Golub, “Fresnel axicon,” Opt. Lett. 31, 1890–1892 (2006).
    [Crossref]
  13. J. Turunen, A. Vasara, and A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3962 (1988).
    [Crossref]
  14. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989).
    [Crossref]
  15. J. A. Davis, J. Guertin, and D. M. Cottrell, “Diffraction-free beams generated with programmable spatial light modulators,” Appl. Opt. 32, 6368–6370 (1993).
    [Crossref]
  16. J. Leach, G. M. Gibson, M. J. Padgett, E. Esposito, G. McConnell, A. J. Wright, and J. M. Girkin, “Generation of achromatic Bessel beams using a compensated spatial light modulator,” Opt. Express 14, 5581–5587 (2006).
    [Crossref]
  17. M. Bock, S. Das, and R. Grunwald, “Programmable ultrashort-pulsed flying images,” Opt. Express 17, 7465–7478 (2009).
    [Crossref]
  18. L. Gong, Y.-X. Ren, G.-S. Xue, Q.-C. Wang, J.-H. Zhou, M.-C. Zhong, Z.-Q. Wang, and Y.-M. Li, “Generation of nondiffracting Bessel beam using digital micromirror device,” Appl. Opt. 52, 4566–4575 (2013).
    [Crossref]
  19. J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lönnqvist, J. Säily, J. Häkli, J. Ala-Laurinaho, and A. Räisänen, “Millimetre-wave Bessel beams using computer holograms,” Electron. Lett. 37, 834–835 (2001).
    [Crossref]
  20. J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lönnqvist, T. Koskinen, J. Säily, J. Häkli, and J. Ala-Laurinaho, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theor. Tech. 51, 1274–1280 (2003).
    [Crossref]
  21. B. G. Cai, Y. B. Li, W. X. Jiang, Q. Cheng, and T. J. Cui, “Generation of spatial Bessel beams using holographic metasurface,” Opt. Express 23, 7593–7601 (2015).
    [Crossref]
  22. M. Q. Qi, W. X. Tang, and T. J. Cui, “A broadband Bessel beam launcher using metamaterial lens,” Sci. Rep. 5, 11732 (2015).
    [Crossref]
  23. N. Trappe, R. Mahon, W. Lanigan, J. A. Murphy, and S. Withington, “The quasi-optical analysis of Bessel beams in the far infrared,” Infrared Phys. Technol. 46, 233–247 (2005).
    [Crossref]
  24. M. Shaukat, P. Dean, S. Khanna, M. Lachab, S. Chakraborty, E. Linfield, and A. Davies, “Generation of Bessel beams using a terahertz quantum cascade laser,” Opt. Lett. 34, 1030–1032 (2009).
    [Crossref]
  25. S. Pandey, B. Gupta, and A. Nahata, “Terahertz plasmonic waveguides created via 3D printing,” Opt. Express 21, 24422–24430 (2013).
    [Crossref]
  26. Z. Wu, J. Kinast, M. Gehm, and H. Xin, “Rapid and inexpensive fabrication of terahertz electromagnetic bandgap structures,” Opt. Express 16, 16442–16451 (2008).
    [Crossref]
  27. W.-R. Ng, D. R. Golish, H. Xin, and M. E. Gehm, “Direct rapid-prototyping fabrication of computer-generated volume holograms in the millimeter-wave and terahertz regime,” Opt. Express 22, 3349–3355 (2014).
    [Crossref]
  28. X. Wei, “Orbit angular momentum multiplexing in 0.1-THz free-space communication via 3D printed spiral phase plates,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) (2014), paper STu2F.2.
  29. L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, and J. Liu, “Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications,” in Proceedings of Optical Fiber Communication Conference (OFC) (2014), paper M3K.7.
  30. P. Schemmel, G. Pisano, and B. Maffei, “A modular spiral phase plate design for orbital angular momentum generation at millimetre wavelengths,” Opt. Express 22, 14712–14726 (2014).
    [Crossref]
  31. P. Schemmel, S. Maccalli, G. Pisano, B. Maffei, and M. W. R. Ng, “Three-dimensional measurements of a millimeter wave orbital angular momentum vortex,” Opt. Lett. 39, 626–629 (2014).
    [Crossref]
  32. K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104, 261104 (2014).
    [Crossref]
  33. N. Ahmed, M. P. Lavery, H. Huang, G. Xie, Y. Ren, Y. Yan, and A. E. Willner, “Experimental demonstration of obstruction-tolerant free-space transmission of two 50-Gbaud QPSK data channels using Bessel beams carrying orbital angular momentum,” in European Conference on Optical Communication (ECOC) (IEEE, 2014), pp. 1–3.
  34. A. Gatto, M. Tacca, P. Martelli, P. Boffi, and M. Martinelli, “Free-space orbital angular momentum division multiplexing with Bessel beams,” J. Opt. 13, 064018 (2011).
    [Crossref]
  35. J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
    [Crossref]
  36. C. Paterson and R. Smith, “Higher-order Bessel waves produced by axicon-type computer-generated holograms,” Opt. Commun. 124, 121–130 (1996).
    [Crossref]
  37. S. Qiong-Ge, Z. Ke-Ya, F. Guang-Yu, L. Zheng-Jun, and L. Shu-Tian, “Generalization and propagation of spiraling Bessel beams with a helical axicon,” Chin. Phys. B 21, 014208 (2012).
    [Crossref]
  38. M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17, 023011 (2015).
    [Crossref]
  39. Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, and Z. Zhao, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
    [Crossref]
  40. Brzobohat, “High quality quasi-Bessel beam generated by round-tip axicon,” Opt. Express 16, 12688–12700 (2008).
    [Crossref]
  41. A. Trichili, T. Mhlanga, Y. Ismail, F. S. Roux, M. McLaren, M. Zghal, and A. Forbes, “Detection of Bessel beams with digital axicons,” Opt. Express 22, 17553–17560 (2014).
    [Crossref]
  42. A. Dudley, T. Mhlanga, M. Lavery, A. McDonald, F. S. Roux, M. Padgett, and A. Forbes, “Efficient sorting of Bessel beams,” Opt. Express 21, 165–171 (2013).
    [Crossref]
  43. M. P. Lavery, D. J. Robertson, G. C. Berkhout, G. D. Love, M. J. Padgett, and J. Courtial, “Refractive elements for the measurement of the orbital angular momentum of a single photon,” Opt. Express 20, 2110–2115 (2012).
    [Crossref]
  44. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007).
    [Crossref]
  45. J. Zhou, Y. Liu, Y. Ke, H. Luo, and S. Wen, “Generation of Airy vortex and Airy vector beams based on the modulation of dynamic and geometric phases,” Opt. Lett. 40, 3193–3196 (2015).
    [Crossref]

2015 (4)

M. Q. Qi, W. X. Tang, and T. J. Cui, “A broadband Bessel beam launcher using metamaterial lens,” Sci. Rep. 5, 11732 (2015).
[Crossref]

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17, 023011 (2015).
[Crossref]

B. G. Cai, Y. B. Li, W. X. Jiang, Q. Cheng, and T. J. Cui, “Generation of spatial Bessel beams using holographic metasurface,” Opt. Express 23, 7593–7601 (2015).
[Crossref]

J. Zhou, Y. Liu, Y. Ke, H. Luo, and S. Wen, “Generation of Airy vortex and Airy vector beams based on the modulation of dynamic and geometric phases,” Opt. Lett. 40, 3193–3196 (2015).
[Crossref]

2014 (8)

P. Schemmel, S. Maccalli, G. Pisano, B. Maffei, and M. W. R. Ng, “Three-dimensional measurements of a millimeter wave orbital angular momentum vortex,” Opt. Lett. 39, 626–629 (2014).
[Crossref]

W.-R. Ng, D. R. Golish, H. Xin, and M. E. Gehm, “Direct rapid-prototyping fabrication of computer-generated volume holograms in the millimeter-wave and terahertz regime,” Opt. Express 22, 3349–3355 (2014).
[Crossref]

A. Bitman, S. Goldring, I. Moshe, and Z. Zalevsky, “Computed tomography using broadband Bessel THz beams and phase contrast,” Opt. Lett. 39, 1925–1928 (2014).
[Crossref]

P. Schemmel, G. Pisano, and B. Maffei, “A modular spiral phase plate design for orbital angular momentum generation at millimetre wavelengths,” Opt. Express 22, 14712–14726 (2014).
[Crossref]

A. Trichili, T. Mhlanga, Y. Ismail, F. S. Roux, M. McLaren, M. Zghal, and A. Forbes, “Detection of Bessel beams with digital axicons,” Opt. Express 22, 17553–17560 (2014).
[Crossref]

Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, and Z. Zhao, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104, 261104 (2014).
[Crossref]

C. Liu, X. Wei, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Terahertz imaging system based on Bessel beams via 3D printed axicons at 100  GHz,” Proc. SPIE 9275, 92751Q (2014).

2013 (4)

2012 (4)

M. P. Lavery, D. J. Robertson, G. C. Berkhout, G. D. Love, M. J. Padgett, and J. Courtial, “Refractive elements for the measurement of the orbital angular momentum of a single photon,” Opt. Express 20, 2110–2115 (2012).
[Crossref]

A. Bitman, I. Moshe, and Z. Zalevsky, “Improving depth-of field in broadband THz beams using nondiffractive Bessel beams,” Opt. Lett. 37, 4164–4166 (2012).
[Crossref]

S. Qiong-Ge, Z. Ke-Ya, F. Guang-Yu, L. Zheng-Jun, and L. Shu-Tian, “Generalization and propagation of spiraling Bessel beams with a helical axicon,” Chin. Phys. B 21, 014208 (2012).
[Crossref]

G. Ok, S.-W. Choi, K. H. Park, and H. S. Chun, “Foreign object detection by sub-terahertz quasi-Bessel beam imaging,” Sensors 13, 71–85 (2012).
[Crossref]

2011 (2)

Z. Zhang and T. Buma, “Terahertz imaging in dielectric media with quasi-Bessel beams,” Proc. SPIE 7938, 793806 (2011).
[Crossref]

A. Gatto, M. Tacca, P. Martelli, P. Boffi, and M. Martinelli, “Free-space orbital angular momentum division multiplexing with Bessel beams,” J. Opt. 13, 064018 (2011).
[Crossref]

2009 (2)

2008 (2)

2007 (2)

2006 (2)

2005 (2)

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005).
[Crossref]

N. Trappe, R. Mahon, W. Lanigan, J. A. Murphy, and S. Withington, “The quasi-optical analysis of Bessel beams in the far infrared,” Infrared Phys. Technol. 46, 233–247 (2005).
[Crossref]

2003 (1)

J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lönnqvist, T. Koskinen, J. Säily, J. Häkli, and J. Ala-Laurinaho, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theor. Tech. 51, 1274–1280 (2003).
[Crossref]

2001 (1)

J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lönnqvist, J. Säily, J. Häkli, J. Ala-Laurinaho, and A. Räisänen, “Millimetre-wave Bessel beams using computer holograms,” Electron. Lett. 37, 834–835 (2001).
[Crossref]

2000 (1)

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[Crossref]

1999 (1)

S. Monk, J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, “The generation of Bessel beams at millimetre-wave frequencies by use of an axicon,” Opt. Commun. 170, 213–215 (1999).
[Crossref]

1996 (1)

C. Paterson and R. Smith, “Higher-order Bessel waves produced by axicon-type computer-generated holograms,” Opt. Commun. 124, 121–130 (1996).
[Crossref]

1993 (1)

1989 (1)

1988 (1)

1987 (1)

1954 (1)

Ahmed, N.

Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, and Z. Zhao, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

N. Ahmed, M. P. Lavery, H. Huang, G. Xie, Y. Ren, Y. Yan, and A. E. Willner, “Experimental demonstration of obstruction-tolerant free-space transmission of two 50-Gbaud QPSK data channels using Bessel beams carrying orbital angular momentum,” in European Conference on Optical Communication (ECOC) (IEEE, 2014), pp. 1–3.

Akiba, T.

K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104, 261104 (2014).
[Crossref]

Ala-Laurinaho, J.

J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lönnqvist, T. Koskinen, J. Säily, J. Häkli, and J. Ala-Laurinaho, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theor. Tech. 51, 1274–1280 (2003).
[Crossref]

J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lönnqvist, J. Säily, J. Häkli, J. Ala-Laurinaho, and A. Räisänen, “Millimetre-wave Bessel beams using computer holograms,” Electron. Lett. 37, 834–835 (2001).
[Crossref]

Arlt, J.

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[Crossref]

S. Monk, J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, “The generation of Bessel beams at millimetre-wave frequencies by use of an axicon,” Opt. Commun. 170, 213–215 (1999).
[Crossref]

Bao, C.

Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, and Z. Zhao, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Berkhout, G. C.

Bitman, A.

Bock, M.

Boffi, P.

A. Gatto, M. Tacca, P. Martelli, P. Boffi, and M. Martinelli, “Free-space orbital angular momentum division multiplexing with Bessel beams,” J. Opt. 13, 064018 (2011).
[Crossref]

Boyd, R. W.

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17, 023011 (2015).
[Crossref]

Brzobohat,

Buma, T.

Z. Zhang and T. Buma, “Terahertz imaging in dielectric media with quasi-Bessel beams,” Proc. SPIE 7938, 793806 (2011).
[Crossref]

Cai, B. G.

Cao, Y.

Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, and Z. Zhao, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Chakraborty, S.

Cheng, Q.

Choi, S.-W.

G. Ok, S.-W. Choi, K. H. Park, and H. S. Chun, “Foreign object detection by sub-terahertz quasi-Bessel beam imaging,” Sensors 13, 71–85 (2012).
[Crossref]

Christodoulides, D. N.

Chun, H. S.

G. Ok, S.-W. Choi, K. H. Park, and H. S. Chun, “Foreign object detection by sub-terahertz quasi-Bessel beam imaging,” Sensors 13, 71–85 (2012).
[Crossref]

Cottrell, D. M.

Courtial, J.

M. P. Lavery, D. J. Robertson, G. C. Berkhout, G. D. Love, M. J. Padgett, and J. Courtial, “Refractive elements for the measurement of the orbital angular momentum of a single photon,” Opt. Express 20, 2110–2115 (2012).
[Crossref]

S. Monk, J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, “The generation of Bessel beams at millimetre-wave frequencies by use of an axicon,” Opt. Commun. 170, 213–215 (1999).
[Crossref]

Cui, T. J.

M. Q. Qi, W. X. Tang, and T. J. Cui, “A broadband Bessel beam launcher using metamaterial lens,” Sci. Rep. 5, 11732 (2015).
[Crossref]

B. G. Cai, Y. B. Li, W. X. Jiang, Q. Cheng, and T. J. Cui, “Generation of spatial Bessel beams using holographic metasurface,” Opt. Express 23, 7593–7601 (2015).
[Crossref]

Das, S.

Davies, A.

Davis, J. A.

Dean, P.

Dholakia, K.

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005).
[Crossref]

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[Crossref]

Dudley, A.

Durnin, J.

Esposito, E.

Forbes, A.

Friberg, A. T.

Gatto, A.

A. Gatto, M. Tacca, P. Martelli, P. Boffi, and M. Martinelli, “Free-space orbital angular momentum division multiplexing with Bessel beams,” J. Opt. 13, 064018 (2011).
[Crossref]

Gehm, M.

Gehm, M. E.

Gibson, G. M.

Girkin, J. M.

Goldring, S.

Golish, D. R.

Golub, I.

Gong, L.

Grunwald, R.

Guang-Yu, F.

S. Qiong-Ge, Z. Ke-Ya, F. Guang-Yu, L. Zheng-Jun, and L. Shu-Tian, “Generalization and propagation of spiraling Bessel beams with a helical axicon,” Chin. Phys. B 21, 014208 (2012).
[Crossref]

Guertin, J.

Gupta, B.

Häkli, J.

J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lönnqvist, T. Koskinen, J. Säily, J. Häkli, and J. Ala-Laurinaho, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theor. Tech. 51, 1274–1280 (2003).
[Crossref]

J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lönnqvist, J. Säily, J. Häkli, J. Ala-Laurinaho, and A. Räisänen, “Millimetre-wave Bessel beams using computer holograms,” Electron. Lett. 37, 834–835 (2001).
[Crossref]

Huang, H.

Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, and Z. Zhao, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

N. Ahmed, M. P. Lavery, H. Huang, G. Xie, Y. Ren, Y. Yan, and A. E. Willner, “Experimental demonstration of obstruction-tolerant free-space transmission of two 50-Gbaud QPSK data channels using Bessel beams carrying orbital angular momentum,” in European Conference on Optical Communication (ECOC) (IEEE, 2014), pp. 1–3.

Ismail, Y.

Jiang, W. X.

Ke, Y.

Ke-Ya, Z.

S. Qiong-Ge, Z. Ke-Ya, F. Guang-Yu, L. Zheng-Jun, and L. Shu-Tian, “Generalization and propagation of spiraling Bessel beams with a helical axicon,” Chin. Phys. B 21, 014208 (2012).
[Crossref]

Khanna, S.

Kinast, J.

Koskinen, T.

J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lönnqvist, T. Koskinen, J. Säily, J. Häkli, and J. Ala-Laurinaho, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theor. Tech. 51, 1274–1280 (2003).
[Crossref]

Lachab, M.

Lanigan, W.

N. Trappe, R. Mahon, W. Lanigan, J. A. Murphy, and S. Withington, “The quasi-optical analysis of Bessel beams in the far infrared,” Infrared Phys. Technol. 46, 233–247 (2005).
[Crossref]

Lavery, M.

Lavery, M. P.

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17, 023011 (2015).
[Crossref]

Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, and Z. Zhao, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

M. P. Lavery, D. J. Robertson, G. C. Berkhout, G. D. Love, M. J. Padgett, and J. Courtial, “Refractive elements for the measurement of the orbital angular momentum of a single photon,” Opt. Express 20, 2110–2115 (2012).
[Crossref]

N. Ahmed, M. P. Lavery, H. Huang, G. Xie, Y. Ren, Y. Yan, and A. E. Willner, “Experimental demonstration of obstruction-tolerant free-space transmission of two 50-Gbaud QPSK data channels using Bessel beams carrying orbital angular momentum,” in European Conference on Optical Communication (ECOC) (IEEE, 2014), pp. 1–3.

Leach, J.

Li, L.

Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, and Z. Zhao, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Li, S.

L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, and J. Liu, “Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications,” in Proceedings of Optical Fiber Communication Conference (OFC) (2014), paper M3K.7.

Li, Y. B.

Li, Y.-M.

Li, Z.

L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, and J. Liu, “Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications,” in Proceedings of Optical Fiber Communication Conference (OFC) (2014), paper M3K.7.

Linfield, E.

Liu, C.

C. Liu, X. Wei, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Terahertz imaging system based on Bessel beams via 3D printed axicons at 100  GHz,” Proc. SPIE 9275, 92751Q (2014).

Liu, J.

C. Liu, X. Wei, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Terahertz imaging system based on Bessel beams via 3D printed axicons at 100  GHz,” Proc. SPIE 9275, 92751Q (2014).

L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, and J. Liu, “Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications,” in Proceedings of Optical Fiber Communication Conference (OFC) (2014), paper M3K.7.

Liu, Y.

Lönnqvist, A.

J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lönnqvist, T. Koskinen, J. Säily, J. Häkli, and J. Ala-Laurinaho, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theor. Tech. 51, 1274–1280 (2003).
[Crossref]

J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lönnqvist, J. Säily, J. Häkli, J. Ala-Laurinaho, and A. Räisänen, “Millimetre-wave Bessel beams using computer holograms,” Electron. Lett. 37, 834–835 (2001).
[Crossref]

Love, G. D.

Luo, H.

Maccalli, S.

Maffei, B.

Mahon, R.

N. Trappe, R. Mahon, W. Lanigan, J. A. Murphy, and S. Withington, “The quasi-optical analysis of Bessel beams in the far infrared,” Infrared Phys. Technol. 46, 233–247 (2005).
[Crossref]

Martelli, P.

A. Gatto, M. Tacca, P. Martelli, P. Boffi, and M. Martinelli, “Free-space orbital angular momentum division multiplexing with Bessel beams,” J. Opt. 13, 064018 (2011).
[Crossref]

Martinelli, M.

A. Gatto, M. Tacca, P. Martelli, P. Boffi, and M. Martinelli, “Free-space orbital angular momentum division multiplexing with Bessel beams,” J. Opt. 13, 064018 (2011).
[Crossref]

McConnell, G.

McDonald, A.

McGloin, D.

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005).
[Crossref]

McLaren, M.

McLeod, J. H.

Meltaus, J.

J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lönnqvist, T. Koskinen, J. Säily, J. Häkli, and J. Ala-Laurinaho, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theor. Tech. 51, 1274–1280 (2003).
[Crossref]

J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lönnqvist, J. Säily, J. Häkli, J. Ala-Laurinaho, and A. Räisänen, “Millimetre-wave Bessel beams using computer holograms,” Electron. Lett. 37, 834–835 (2001).
[Crossref]

Mhlanga, T.

Miatto, F. M.

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17, 023011 (2015).
[Crossref]

Miyamoto, K.

K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104, 261104 (2014).
[Crossref]

Monk, S.

S. Monk, J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, “The generation of Bessel beams at millimetre-wave frequencies by use of an axicon,” Opt. Commun. 170, 213–215 (1999).
[Crossref]

Moshe, I.

Murphy, J. A.

N. Trappe, R. Mahon, W. Lanigan, J. A. Murphy, and S. Withington, “The quasi-optical analysis of Bessel beams in the far infrared,” Infrared Phys. Technol. 46, 233–247 (2005).
[Crossref]

Nahata, A.

Ng, M. W. R.

Ng, W.-R.

Noponen, E.

J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lönnqvist, T. Koskinen, J. Säily, J. Häkli, and J. Ala-Laurinaho, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theor. Tech. 51, 1274–1280 (2003).
[Crossref]

J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lönnqvist, J. Säily, J. Häkli, J. Ala-Laurinaho, and A. Räisänen, “Millimetre-wave Bessel beams using computer holograms,” Electron. Lett. 37, 834–835 (2001).
[Crossref]

Ok, G.

G. Ok, S.-W. Choi, K. H. Park, and H. S. Chun, “Foreign object detection by sub-terahertz quasi-Bessel beam imaging,” Sensors 13, 71–85 (2012).
[Crossref]

Omatsu, T.

K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104, 261104 (2014).
[Crossref]

Padgett, M.

Padgett, M. J.

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17, 023011 (2015).
[Crossref]

M. P. Lavery, D. J. Robertson, G. C. Berkhout, G. D. Love, M. J. Padgett, and J. Courtial, “Refractive elements for the measurement of the orbital angular momentum of a single photon,” Opt. Express 20, 2110–2115 (2012).
[Crossref]

J. Leach, G. M. Gibson, M. J. Padgett, E. Esposito, G. McConnell, A. J. Wright, and J. M. Girkin, “Generation of achromatic Bessel beams using a compensated spatial light modulator,” Opt. Express 14, 5581–5587 (2006).
[Crossref]

S. Monk, J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, “The generation of Bessel beams at millimetre-wave frequencies by use of an axicon,” Opt. Commun. 170, 213–215 (1999).
[Crossref]

Pandey, S.

Park, K. H.

G. Ok, S.-W. Choi, K. H. Park, and H. S. Chun, “Foreign object detection by sub-terahertz quasi-Bessel beam imaging,” Sensors 13, 71–85 (2012).
[Crossref]

Paterson, C.

C. Paterson and R. Smith, “Higher-order Bessel waves produced by axicon-type computer-generated holograms,” Opt. Commun. 124, 121–130 (1996).
[Crossref]

Pisano, G.

Qi, M. Q.

M. Q. Qi, W. X. Tang, and T. J. Cui, “A broadband Bessel beam launcher using metamaterial lens,” Sci. Rep. 5, 11732 (2015).
[Crossref]

Qiong-Ge, S.

S. Qiong-Ge, Z. Ke-Ya, F. Guang-Yu, L. Zheng-Jun, and L. Shu-Tian, “Generalization and propagation of spiraling Bessel beams with a helical axicon,” Chin. Phys. B 21, 014208 (2012).
[Crossref]

Räisänen, A.

J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lönnqvist, J. Säily, J. Häkli, J. Ala-Laurinaho, and A. Räisänen, “Millimetre-wave Bessel beams using computer holograms,” Electron. Lett. 37, 834–835 (2001).
[Crossref]

Ren, Y.

Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, and Z. Zhao, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

N. Ahmed, M. P. Lavery, H. Huang, G. Xie, Y. Ren, Y. Yan, and A. E. Willner, “Experimental demonstration of obstruction-tolerant free-space transmission of two 50-Gbaud QPSK data channels using Bessel beams carrying orbital angular momentum,” in European Conference on Optical Communication (ECOC) (IEEE, 2014), pp. 1–3.

Ren, Y.-X.

Robertson, D. A.

S. Monk, J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, “The generation of Bessel beams at millimetre-wave frequencies by use of an axicon,” Opt. Commun. 170, 213–215 (1999).
[Crossref]

Robertson, D. J.

Roux, F. S.

Säily, J.

J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lönnqvist, T. Koskinen, J. Säily, J. Häkli, and J. Ala-Laurinaho, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theor. Tech. 51, 1274–1280 (2003).
[Crossref]

J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lönnqvist, J. Säily, J. Häkli, J. Ala-Laurinaho, and A. Räisänen, “Millimetre-wave Bessel beams using computer holograms,” Electron. Lett. 37, 834–835 (2001).
[Crossref]

Salo, J.

J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lönnqvist, T. Koskinen, J. Säily, J. Häkli, and J. Ala-Laurinaho, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theor. Tech. 51, 1274–1280 (2003).
[Crossref]

J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lönnqvist, J. Säily, J. Häkli, J. Ala-Laurinaho, and A. Räisänen, “Millimetre-wave Bessel beams using computer holograms,” Electron. Lett. 37, 834–835 (2001).
[Crossref]

Salomaa, M.

J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lönnqvist, J. Säily, J. Häkli, J. Ala-Laurinaho, and A. Räisänen, “Millimetre-wave Bessel beams using computer holograms,” Electron. Lett. 37, 834–835 (2001).
[Crossref]

Salomaa, M. M.

J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lönnqvist, T. Koskinen, J. Säily, J. Häkli, and J. Ala-Laurinaho, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theor. Tech. 51, 1274–1280 (2003).
[Crossref]

Schemmel, P.

Shaukat, M.

Shu-Tian, L.

S. Qiong-Ge, Z. Ke-Ya, F. Guang-Yu, L. Zheng-Jun, and L. Shu-Tian, “Generalization and propagation of spiraling Bessel beams with a helical axicon,” Chin. Phys. B 21, 014208 (2012).
[Crossref]

Siviloglou, G. A.

Smith, R.

C. Paterson and R. Smith, “Higher-order Bessel waves produced by axicon-type computer-generated holograms,” Opt. Commun. 124, 121–130 (1996).
[Crossref]

Suizu, K.

K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104, 261104 (2014).
[Crossref]

Tacca, M.

A. Gatto, M. Tacca, P. Martelli, P. Boffi, and M. Martinelli, “Free-space orbital angular momentum division multiplexing with Bessel beams,” J. Opt. 13, 064018 (2011).
[Crossref]

Tang, W. X.

M. Q. Qi, W. X. Tang, and T. J. Cui, “A broadband Bessel beam launcher using metamaterial lens,” Sci. Rep. 5, 11732 (2015).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Trappe, N.

N. Trappe, R. Mahon, W. Lanigan, J. A. Murphy, and S. Withington, “The quasi-optical analysis of Bessel beams in the far infrared,” Infrared Phys. Technol. 46, 233–247 (2005).
[Crossref]

Trichili, A.

Turunen, J.

Vasara, A.

Viikari, V.

J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lönnqvist, T. Koskinen, J. Säily, J. Häkli, and J. Ala-Laurinaho, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theor. Tech. 51, 1274–1280 (2003).
[Crossref]

Wang, J.

L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, and J. Liu, “Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications,” in Proceedings of Optical Fiber Communication Conference (OFC) (2014), paper M3K.7.

Wang, K.

C. Liu, X. Wei, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Terahertz imaging system based on Bessel beams via 3D printed axicons at 100  GHz,” Proc. SPIE 9275, 92751Q (2014).

L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, and J. Liu, “Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications,” in Proceedings of Optical Fiber Communication Conference (OFC) (2014), paper M3K.7.

Wang, Q.-C.

Wang, Z.-Q.

Wei, X.

C. Liu, X. Wei, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Terahertz imaging system based on Bessel beams via 3D printed axicons at 100  GHz,” Proc. SPIE 9275, 92751Q (2014).

L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, and J. Liu, “Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications,” in Proceedings of Optical Fiber Communication Conference (OFC) (2014), paper M3K.7.

X. Wei, “Orbit angular momentum multiplexing in 0.1-THz free-space communication via 3D printed spiral phase plates,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) (2014), paper STu2F.2.

Wen, S.

Westerholm, J.

J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lönnqvist, J. Säily, J. Häkli, J. Ala-Laurinaho, and A. Räisänen, “Millimetre-wave Bessel beams using computer holograms,” Electron. Lett. 37, 834–835 (2001).
[Crossref]

Willner, A. E.

N. Ahmed, M. P. Lavery, H. Huang, G. Xie, Y. Ren, Y. Yan, and A. E. Willner, “Experimental demonstration of obstruction-tolerant free-space transmission of two 50-Gbaud QPSK data channels using Bessel beams carrying orbital angular momentum,” in European Conference on Optical Communication (ECOC) (IEEE, 2014), pp. 1–3.

Withington, S.

N. Trappe, R. Mahon, W. Lanigan, J. A. Murphy, and S. Withington, “The quasi-optical analysis of Bessel beams in the far infrared,” Infrared Phys. Technol. 46, 233–247 (2005).
[Crossref]

Wright, A. J.

Wu, Z.

Xie, G.

Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, and Z. Zhao, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

N. Ahmed, M. P. Lavery, H. Huang, G. Xie, Y. Ren, Y. Yan, and A. E. Willner, “Experimental demonstration of obstruction-tolerant free-space transmission of two 50-Gbaud QPSK data channels using Bessel beams carrying orbital angular momentum,” in European Conference on Optical Communication (ECOC) (IEEE, 2014), pp. 1–3.

Xin, H.

Xue, G.-S.

Yan, Y.

Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, and Z. Zhao, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

N. Ahmed, M. P. Lavery, H. Huang, G. Xie, Y. Ren, Y. Yan, and A. E. Willner, “Experimental demonstration of obstruction-tolerant free-space transmission of two 50-Gbaud QPSK data channels using Bessel beams carrying orbital angular momentum,” in European Conference on Optical Communication (ECOC) (IEEE, 2014), pp. 1–3.

Yang, Z.

C. Liu, X. Wei, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Terahertz imaging system based on Bessel beams via 3D printed axicons at 100  GHz,” Proc. SPIE 9275, 92751Q (2014).

Zalevsky, Z.

Zeilinger, A.

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17, 023011 (2015).
[Crossref]

Zghal, M.

Zhang, H.

L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, and J. Liu, “Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications,” in Proceedings of Optical Fiber Communication Conference (OFC) (2014), paper M3K.7.

Zhang, Z.

C. Liu, X. Wei, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Terahertz imaging system based on Bessel beams via 3D printed axicons at 100  GHz,” Proc. SPIE 9275, 92751Q (2014).

Z. Zhang and T. Buma, “Terahertz imaging in dielectric media with quasi-Bessel beams,” Proc. SPIE 7938, 793806 (2011).
[Crossref]

L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, and J. Liu, “Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications,” in Proceedings of Optical Fiber Communication Conference (OFC) (2014), paper M3K.7.

Zhao, Z.

Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, and Z. Zhao, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Zheng-Jun, L.

S. Qiong-Ge, Z. Ke-Ya, F. Guang-Yu, L. Zheng-Jun, and L. Shu-Tian, “Generalization and propagation of spiraling Bessel beams with a helical axicon,” Chin. Phys. B 21, 014208 (2012).
[Crossref]

Zhong, M.-C.

Zhou, J.

Zhou, J.-H.

Zhu, L.

L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, and J. Liu, “Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications,” in Proceedings of Optical Fiber Communication Conference (OFC) (2014), paper M3K.7.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104, 261104 (2014).
[Crossref]

Chin. Phys. B (1)

S. Qiong-Ge, Z. Ke-Ya, F. Guang-Yu, L. Zheng-Jun, and L. Shu-Tian, “Generalization and propagation of spiraling Bessel beams with a helical axicon,” Chin. Phys. B 21, 014208 (2012).
[Crossref]

Contemp. Phys. (1)

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005).
[Crossref]

Electron. Lett. (1)

J. Salo, J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lönnqvist, J. Säily, J. Häkli, J. Ala-Laurinaho, and A. Räisänen, “Millimetre-wave Bessel beams using computer holograms,” Electron. Lett. 37, 834–835 (2001).
[Crossref]

IEEE Trans. Microwave Theor. Tech. (1)

J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lönnqvist, T. Koskinen, J. Säily, J. Häkli, and J. Ala-Laurinaho, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theor. Tech. 51, 1274–1280 (2003).
[Crossref]

Infrared Phys. Technol. (1)

N. Trappe, R. Mahon, W. Lanigan, J. A. Murphy, and S. Withington, “The quasi-optical analysis of Bessel beams in the far infrared,” Infrared Phys. Technol. 46, 233–247 (2005).
[Crossref]

J. Opt. (1)

A. Gatto, M. Tacca, P. Martelli, P. Boffi, and M. Martinelli, “Free-space orbital angular momentum division multiplexing with Bessel beams,” J. Opt. 13, 064018 (2011).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Nat. Commun. (1)

Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, and Z. Zhao, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

New J. Phys. (1)

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17, 023011 (2015).
[Crossref]

Opt. Commun. (4)

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[Crossref]

C. Paterson and R. Smith, “Higher-order Bessel waves produced by axicon-type computer-generated holograms,” Opt. Commun. 124, 121–130 (1996).
[Crossref]

S. Monk, J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, “The generation of Bessel beams at millimetre-wave frequencies by use of an axicon,” Opt. Commun. 170, 213–215 (1999).
[Crossref]

A. Bitman, I. Moshe, and Z. Zalevsky, “Broadband THz, extended depth of focus imaging based on step phase mask aided interferometry,” Opt. Commun. 309, 1–5 (2013).
[Crossref]

Opt. Express (11)

B. G. Cai, Y. B. Li, W. X. Jiang, Q. Cheng, and T. J. Cui, “Generation of spatial Bessel beams using holographic metasurface,” Opt. Express 23, 7593–7601 (2015).
[Crossref]

P. Schemmel, G. Pisano, and B. Maffei, “A modular spiral phase plate design for orbital angular momentum generation at millimetre wavelengths,” Opt. Express 22, 14712–14726 (2014).
[Crossref]

J. Leach, G. M. Gibson, M. J. Padgett, E. Esposito, G. McConnell, A. J. Wright, and J. M. Girkin, “Generation of achromatic Bessel beams using a compensated spatial light modulator,” Opt. Express 14, 5581–5587 (2006).
[Crossref]

M. Bock, S. Das, and R. Grunwald, “Programmable ultrashort-pulsed flying images,” Opt. Express 17, 7465–7478 (2009).
[Crossref]

S. Pandey, B. Gupta, and A. Nahata, “Terahertz plasmonic waveguides created via 3D printing,” Opt. Express 21, 24422–24430 (2013).
[Crossref]

Z. Wu, J. Kinast, M. Gehm, and H. Xin, “Rapid and inexpensive fabrication of terahertz electromagnetic bandgap structures,” Opt. Express 16, 16442–16451 (2008).
[Crossref]

W.-R. Ng, D. R. Golish, H. Xin, and M. E. Gehm, “Direct rapid-prototyping fabrication of computer-generated volume holograms in the millimeter-wave and terahertz regime,” Opt. Express 22, 3349–3355 (2014).
[Crossref]

Brzobohat, “High quality quasi-Bessel beam generated by round-tip axicon,” Opt. Express 16, 12688–12700 (2008).
[Crossref]

A. Trichili, T. Mhlanga, Y. Ismail, F. S. Roux, M. McLaren, M. Zghal, and A. Forbes, “Detection of Bessel beams with digital axicons,” Opt. Express 22, 17553–17560 (2014).
[Crossref]

A. Dudley, T. Mhlanga, M. Lavery, A. McDonald, F. S. Roux, M. Padgett, and A. Forbes, “Efficient sorting of Bessel beams,” Opt. Express 21, 165–171 (2013).
[Crossref]

M. P. Lavery, D. J. Robertson, G. C. Berkhout, G. D. Love, M. J. Padgett, and J. Courtial, “Refractive elements for the measurement of the orbital angular momentum of a single photon,” Opt. Express 20, 2110–2115 (2012).
[Crossref]

Opt. Lett. (7)

Proc. SPIE (2)

C. Liu, X. Wei, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Terahertz imaging system based on Bessel beams via 3D printed axicons at 100  GHz,” Proc. SPIE 9275, 92751Q (2014).

Z. Zhang and T. Buma, “Terahertz imaging in dielectric media with quasi-Bessel beams,” Proc. SPIE 7938, 793806 (2011).
[Crossref]

Sci. Rep. (1)

M. Q. Qi, W. X. Tang, and T. J. Cui, “A broadband Bessel beam launcher using metamaterial lens,” Sci. Rep. 5, 11732 (2015).
[Crossref]

Sensors (1)

G. Ok, S.-W. Choi, K. H. Park, and H. S. Chun, “Foreign object detection by sub-terahertz quasi-Bessel beam imaging,” Sensors 13, 71–85 (2012).
[Crossref]

Other (3)

N. Ahmed, M. P. Lavery, H. Huang, G. Xie, Y. Ren, Y. Yan, and A. E. Willner, “Experimental demonstration of obstruction-tolerant free-space transmission of two 50-Gbaud QPSK data channels using Bessel beams carrying orbital angular momentum,” in European Conference on Optical Communication (ECOC) (IEEE, 2014), pp. 1–3.

X. Wei, “Orbit angular momentum multiplexing in 0.1-THz free-space communication via 3D printed spiral phase plates,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) (2014), paper STu2F.2.

L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, and J. Liu, “Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications,” in Proceedings of Optical Fiber Communication Conference (OFC) (2014), paper M3K.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic diagram for (a) OAM generation by the SPP, (b) zero-order Bessel beam generation by the axicon, and (c) high-order Bessel beam generation by the helical axicon. Here, γ is the base angle of the axicon.
Fig. 2.
Fig. 2. Schematic drawing of the phase plates: (a) the SPP with l = 1 , (b) the SPP with l = 6 , (c) the axicon, and (d) the helical axicon with l = 6 .
Fig. 3.
Fig. 3. Photographs of the phase plates: (a) the axicons, (b) the helical axicons, and (c) the SPPs.
Fig. 4.
Fig. 4. Experimental setup for obtaining and measuring the generated beams. The inset illustrates the intensity profile of the collimated Gaussian beam at the input plane of the phase plates. The silicon wafer and mirror in the dashed box offer a reference beam for interfering with the generated beam.
Fig. 5.
Fig. 5. Experimental results for Bessel beams generated by the axicons. (a) The experimentally obtained z max (discrete triangles) as a function of base angle γ . The black curve gives the theoretical calculations. (b) The axial intensity profiles along the z axis. (c) The first row shows the x z longitudinal profiles, the second row shows the normalized x y transverse profiles at respective z f ., and the third row shows the measured radial intensity profile (dotted red line) fitted to the Bessel function squared (solid black line).
Fig. 6.
Fig. 6. Experimental results of (a) high-order Bessel beams generated by the helical axicons and (b) OAM beams generated by the SPPs. The first row of (a) and (b) shows the x z longitudinal profiles. The second row of (a) and (b) shows the x y transverse normalized profiles at z f = 132 mm .
Fig. 7.
Fig. 7. Experimental results of high-order Bessel beams and OAM beams. (a) The radial profiles of the high-order Bessel beams (dotted red line) fitted to the Bessel function squared (solid black line). (b) The radial profiles of the OAM beams. The axial intensity profiles for (c) the high-order Bessel beams and (d) the OAM beams.
Fig. 8.
Fig. 8. Volume rending of three kinds of the generated beams using two methods. The first row gives the volume rending. The second row gives the transverse and longitudinal cross-sectional intensity profiles. (Colorbar type: rainbow. Dimension unit: mm.)
Fig. 9.
Fig. 9. Interference pattern of the reference beam with (a) the Gaussian beam, (b) the zero-order Bessel beam generated by the γ = 10 ° axicon, and (c) the high-order Bessel beams with l = 1 , 2, 3. The first and second rows show the experimentally measured results. The third row shows the numerically calculated results.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E ( ρ , φ , z ) = E 0 J l ( k ρ ρ ) exp ( j k z z ) exp ( j l φ ) ,
h 3 ( φ , ρ ) = ρ tan ( γ ) + l λ φ ( n 1 ) 2 π , 0 < φ < 2 π / l ,
T 1 ( φ ) = exp ( j k ( n 1 ) h 1 ) = exp ( j l φ ) , T 2 ( ρ ) = exp ( j k ( n 1 ) h 2 ) = exp ( j k ρ ρ ) , T 3 ( φ , ρ ) = exp ( j k ( n 1 ) h 3 ) = exp ( j k ρ ρ ) * exp ( j l φ ) .
ϕ ( φ , ρ ) = k ( n 1 ) ρ γ + l φ .
α 0 = arcsin ( n n 0 cos ( τ 2 ) ) + τ π 2 .
α 0 = ( n 1 ) γ .
z max = ω 0 tan α 0 .

Metrics