Abstract

Modeling radiative transport in luminescent particulate media is important to a variety of applications, from biomedical imaging to solar power harvesting. When absorption and scattering from individual particles must be considered, the description of radiative transport is not straightforward. For large particles and interparticle spacing, geometrical optics can be employed. However, this approach requires accurate knowledge of several particle properties, such as index of refraction and absorption coefficient, along with particle geometry and positioning. Because the determination of these variables is often nontrivial, we developed an approach for modeling radiative transport in such media, which combines two simple experiments with Monte Carlo simulations to determine the particle extinction coefficient (Γ) and the probability of absorption of light by a particle (PA). The method is validated on samples consisting of luminescent phosphor powder dispersed in a silicone matrix.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Radiative transport theory for light propagation in luminescent media

Derya Şahin and Boaz Ilan
J. Opt. Soc. Am. A 30(5) 813-820 (2013)

Analytical modeling of light transport in scattering materials with strong absorption

M. L. Meretska, R. Uppu, G. Vissenberg, A. Lagendijk, W. L. Ijzerman, and W. L. Vos
Opt. Express 25(20) A906-A921 (2017)

Evaluation of photon migration using a two speed model for characterization of packed powder beds and dense particulate suspensions

Tianshu Pan, Sarabjyot S. Dali, and Eva M. Sevick-Muraca
Opt. Express 13(10) 3600-3618 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription