Abstract

Hollow silica waveguides (HSWs) are used to produce long path length, low-volume gas cells, and are demonstrated with quantum cascade laser spectroscopy. Absorption measurements are made using the intrapulse technique, which allows measurements to be made across a single laser pulse. Simultaneous laser light and gas coupling is achieved through the modification of commercially available gas fittings with low dead volume. Three HSW gas cell configurations with different path lengths and internal diameters are analyzed and compared with a 30 m path length astigmatic Herriott cell. Limit of detection measurements are made for the gas cells using methane at a wavelength 7.82 μm. The lowest limit of detection was provided by HSW with a bore diameter of 1000 μm and a path length of 5 m and was measured to be 0.26 ppm, with a noise equivalent absorbance of 4.1×104. The long-term stability of the HSW and Herriott cells is compared through analysis of the Allan–Werle variance of data collected over a 24 h period. The response times of the HSW and Herriott cells are measured to be 0.8 s and 36 s, respectively.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

23 August 2016: A correction was made to the author listing.


OSA Recommended Articles
Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser

Yingchun Cao, Nancy P. Sanchez, Wenzhe Jiang, Robert J. Griffin, Feng Xie, Lawrence C. Hughes, Chung-en Zah, and Frank K. Tittel
Opt. Express 23(3) 2121-2132 (2015)

Methane detection using scattering material as the gas cell

Hongze Lin, Fei Gao, Yujian Ding, Chunsheng Yan, and Sailing He
Appl. Opt. 55(28) 8030-8034 (2016)

Open-path spectroscopic methane detection using a broadband monolithic distributed feedback-quantum cascade laser array

Anna P. M. Michel, Jason Kapit, Mark F. Witinski, and Romain Blanchard
Appl. Opt. 56(11) E23-E29 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. (Wiley, 1994).
  2. D. Masiyano, J. Hodgkinson, and R. P. Tatam, “Use of diffuse reflections in tunable diode laser absorption spectroscopy: implications of laser speckle for gas absorption measurements,” Appl. Phys. B 90, 279–288 (2008).
    [Crossref]
  3. J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24, 1–59 (2013).
    [Crossref]
  4. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [Crossref]
  5. F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49, 111102 (2010).
    [Crossref]
  6. J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49, 111124 (2010).
    [Crossref]
  7. L. Wang and B. Mizaikoff, “Application of multivariate data-analysis techniques to biomedical diagnostics based on mid-infrared spectroscopy,” Anal. Bioanal. Chem. 391, 1641–1654 (2008).
    [Crossref]
  8. M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1, 014001 (2007).
    [Crossref]
  9. E. L. Normand, R. J. Stokes, K. Hay, B. Foulger, and C. Lewis, “Advances in quantum cascade lasers for security and crime fighting,” Proc. SPIE 7838, 78380A (2011).
    [Crossref]
  10. R. H. Micheels, K. Richardson, D. J. Haan, and J. A. Harrington, “FTIR based instrument employing a coiled hollow waveguide cell for rapid field analysis of volatile organic compounds,” Proc. SPIE 3540, 66–74 (1999).
    [Crossref]
  11. B. Cummings, M. L. Hamilton, L. Ciaffoni, T. R. Pragnell, R. Peverall, G. A. D. Ritchie, G. Hancock, and P. A. Robbins, “Laser-based absorption spectroscopy as a technique for rapid in-line analysis of respired gas concentrations of O2 and CO2,” J. Appl. Physiol. 111, 303–307 (2011).
    [Crossref]
  12. C. M. Charlton, B. T. Thompson, and B. Mizaikoff, “Hollow waveguide infrared spectroscopy and sensing,” in Frontiers in Chemical Sensors: Novel Principles and Techniques, G. Orellana and M. C. Moreno-Bondi, eds. (Springer-Verlag, 2005).
  13. J. A. Harrington, “A review of IR transmitting hollow waveguides,” Fiber Integr. Opt. 19, 211–227 (2000).
    [Crossref]
  14. Y. Matsuura, T. Abel, J. Hirsch, and J. A. Harrington, “Single-bore hollow waveguide for delivery of near single mode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
    [Crossref]
  15. R. George and J. A. Harrington, “Infrared transmissive, hollow plastic waveguides with inner Ag/AgI coatings,” Appl. Opt. 44, 6449–6455 (2005).
    [Crossref]
  16. Y. Matsuura, T. Abel, and J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
    [Crossref]
  17. J. A. Harrington, “Theoretical foundations of infrared fiber optic transmission: hollow-core fibers,” in Infrared Fiber Optics and Their Applications (SPIE, 2004).
  18. C. M. Bledt, J. A. Harrington, and J. M. Kriesel, “Multilayer silver/dielectric thin-film coated hollow waveguides for sensor and laser power delivery applications,” Proc. SPIE 8218, 82180H (2012).
    [Crossref]
  19. Polymicro Technologies, Phoenix, Arizona, USA, accessed 11May, 2016, http://www.molex.com/molex/products/group?channel=products&key=polymicro .
  20. G. J. Fetzer, A. S. Pittner, W. L. Ryder, and D. A. Brown, “Tunable diode laser absorption spectroscopy in coiled hollow optical waveguides,” Appl. Opt. 41, 3613–3621 (2002).
    [Crossref]
  21. C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, “Hollow-waveguide gas sensing with room-temperature quantum cascade lasers,” IEE Proc. 150, 306–309 (2003).
  22. C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators B 140, 24–28 (2009).
    [Crossref]
  23. B. T. Thompson, A. Inberg, N. Croitoru, and B. Mizaikoff, “Characterization of a mid-infrared hollow waveguide gas cell for the analysis of carbon monoxide and nitric oxide,” Appl. Spectrosc. 60, 266–271 (2006).
    [Crossref]
  24. J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “Resolution limits of laser spectroscopic absorption measurements with hollow glass waveguides,” Appl. Opt. 49, 5254–5261 (2010).
    [Crossref]
  25. F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibres: technology and applications,” Nanophotonics 2, 315–340 (2013).
    [Crossref]
  26. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St.J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
    [Crossref]
  27. J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20, 075301 (2009).
    [Crossref]
  28. J. A. Nwaboh, J. Hald, J. K. Lyngsø, J. C. Petersen, and O. Werhahn, “Measurements of CO2 in a multipass cell and in a hollow-core photonic bandgap fiber at 2  μm,” Appl. Phys. B 110, 187–194 (2013).
    [Crossref]
  29. N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, and D. R. Richardson, “Low loss and low bend sensitivity mid-IR guidance in a hollow core-photonic bandgap fiber,” Opt. Lett. 39, 295–298 (2014).
    [Crossref]
  30. OmniGuide, Inc., accessed 11May, 2016, http://www.omni-guide.com/ .
  31. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
    [Crossref]
  32. C. Charlton, B. Temelkuran, G. Dellemann, and B. Mizaikoff, “Midinfrared sensors meet nanotechnology: trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides,” Appl. Phys. Lett. 86, 194102 (2005).
    [Crossref]
  33. A. Wilk, J. C. Carter, M. Chrisp, A. M. Manuel, P. Mirkarimi, J. B. Alameda, and B. Mizaikoff, “Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing,” Anal. Chem. 85, 11205–11210 (2013).
    [Crossref]
  34. P. R. Fortes, A. Wilk, F. Seichter, M. Cajlakovic, S. Koestler, V. Ribitsch, U. Wachter, J. Vogt, P. Radermacher, C. Carter, I. M. Raimundo, and B. Mizaikoff, “Combined sensing platform for advance diagnostics in exhaled mouse breath,” Proc. SPIE 8570, 85700Q (2013).
    [Crossref]
  35. D. Francis, J. Hodgkinson, B. Livingstone, and R. P. Tatam, “Quantum cascade laser light propagation through hollow silica waveguides,” Appl. Phys. B 119, 75–86 (2015).
    [Crossref]
  36. E. Normand, M. McCullogh, G. Duxbury, and N. Langford, “Fast, real-time spectrometer based on a pulsed quantum cascade laser,” Opt. Lett. 28, 16–18 (2003).
    [Crossref]
  37. M. Saito and T. Kato, “Fast infrared spectrometer for flowing gases by the use of a hollow fiber and a PtSi sensor array,” Infrared Phys. Technol. 48, 53–58 (2006).
    [Crossref]
  38. D. Francis, J. Hodgkinson, and R. P. Tatam, “Hollow fibre waveguide gas cells,” U.S. patentPCT/GB2016/050789 (22March2016).
  39. Cascade Technologies, accessed 11May2016, http://www3.emersonprocess.com/cascade-technologies .
  40. J. Manne, W. Jäger, and J. Tulip, “Sensitive detection of ammonia and ethylene with a pulsed quantum cascade laser using intra and interpulse spectroscopic techniques,” Appl. Phys. B. 94, 337–344 (2009).
    [Crossref]
  41. M. T. McCulloch, E. L. Normand, N. Langford, G. Duxbury, and D. A. Newnham, “Highly sensitive detection of trace gases using the time-resolved frequency downchirp from pulsed quantum-cascade lasers,” J. Opt. Soc. Am. B 20, 1761–1768 (2003).
    [Crossref]
  42. Accessed 11May, 2016, www.swagelok.com .
  43. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J. M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, and M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
    [Crossref]
  44. P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
    [Crossref]

2015 (1)

D. Francis, J. Hodgkinson, B. Livingstone, and R. P. Tatam, “Quantum cascade laser light propagation through hollow silica waveguides,” Appl. Phys. B 119, 75–86 (2015).
[Crossref]

2014 (1)

2013 (5)

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibres: technology and applications,” Nanophotonics 2, 315–340 (2013).
[Crossref]

J. A. Nwaboh, J. Hald, J. K. Lyngsø, J. C. Petersen, and O. Werhahn, “Measurements of CO2 in a multipass cell and in a hollow-core photonic bandgap fiber at 2  μm,” Appl. Phys. B 110, 187–194 (2013).
[Crossref]

A. Wilk, J. C. Carter, M. Chrisp, A. M. Manuel, P. Mirkarimi, J. B. Alameda, and B. Mizaikoff, “Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing,” Anal. Chem. 85, 11205–11210 (2013).
[Crossref]

P. R. Fortes, A. Wilk, F. Seichter, M. Cajlakovic, S. Koestler, V. Ribitsch, U. Wachter, J. Vogt, P. Radermacher, C. Carter, I. M. Raimundo, and B. Mizaikoff, “Combined sensing platform for advance diagnostics in exhaled mouse breath,” Proc. SPIE 8570, 85700Q (2013).
[Crossref]

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24, 1–59 (2013).
[Crossref]

2012 (1)

C. M. Bledt, J. A. Harrington, and J. M. Kriesel, “Multilayer silver/dielectric thin-film coated hollow waveguides for sensor and laser power delivery applications,” Proc. SPIE 8218, 82180H (2012).
[Crossref]

2011 (2)

B. Cummings, M. L. Hamilton, L. Ciaffoni, T. R. Pragnell, R. Peverall, G. A. D. Ritchie, G. Hancock, and P. A. Robbins, “Laser-based absorption spectroscopy as a technique for rapid in-line analysis of respired gas concentrations of O2 and CO2,” J. Appl. Physiol. 111, 303–307 (2011).
[Crossref]

E. L. Normand, R. J. Stokes, K. Hay, B. Foulger, and C. Lewis, “Advances in quantum cascade lasers for security and crime fighting,” Proc. SPIE 7838, 78380A (2011).
[Crossref]

2010 (3)

F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49, 111102 (2010).
[Crossref]

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49, 111124 (2010).
[Crossref]

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “Resolution limits of laser spectroscopic absorption measurements with hollow glass waveguides,” Appl. Opt. 49, 5254–5261 (2010).
[Crossref]

2009 (3)

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20, 075301 (2009).
[Crossref]

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators B 140, 24–28 (2009).
[Crossref]

J. Manne, W. Jäger, and J. Tulip, “Sensitive detection of ammonia and ethylene with a pulsed quantum cascade laser using intra and interpulse spectroscopic techniques,” Appl. Phys. B. 94, 337–344 (2009).
[Crossref]

2008 (2)

L. Wang and B. Mizaikoff, “Application of multivariate data-analysis techniques to biomedical diagnostics based on mid-infrared spectroscopy,” Anal. Bioanal. Chem. 391, 1641–1654 (2008).
[Crossref]

D. Masiyano, J. Hodgkinson, and R. P. Tatam, “Use of diffuse reflections in tunable diode laser absorption spectroscopy: implications of laser speckle for gas absorption measurements,” Appl. Phys. B 90, 279–288 (2008).
[Crossref]

2007 (1)

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1, 014001 (2007).
[Crossref]

2006 (2)

B. T. Thompson, A. Inberg, N. Croitoru, and B. Mizaikoff, “Characterization of a mid-infrared hollow waveguide gas cell for the analysis of carbon monoxide and nitric oxide,” Appl. Spectrosc. 60, 266–271 (2006).
[Crossref]

M. Saito and T. Kato, “Fast infrared spectrometer for flowing gases by the use of a hollow fiber and a PtSi sensor array,” Infrared Phys. Technol. 48, 53–58 (2006).
[Crossref]

2005 (3)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St.J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref]

C. Charlton, B. Temelkuran, G. Dellemann, and B. Mizaikoff, “Midinfrared sensors meet nanotechnology: trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides,” Appl. Phys. Lett. 86, 194102 (2005).
[Crossref]

R. George and J. A. Harrington, “Infrared transmissive, hollow plastic waveguides with inner Ag/AgI coatings,” Appl. Opt. 44, 6449–6455 (2005).
[Crossref]

2003 (3)

2002 (1)

2000 (1)

J. A. Harrington, “A review of IR transmitting hollow waveguides,” Fiber Integr. Opt. 19, 211–227 (2000).
[Crossref]

1999 (1)

R. H. Micheels, K. Richardson, D. J. Haan, and J. A. Harrington, “FTIR based instrument employing a coiled hollow waveguide cell for rapid field analysis of volatile organic compounds,” Proc. SPIE 3540, 66–74 (1999).
[Crossref]

1998 (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[Crossref]

1995 (1)

1994 (2)

Y. Matsuura, T. Abel, J. Hirsch, and J. A. Harrington, “Single-bore hollow waveguide for delivery of near single mode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

1993 (1)

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[Crossref]

1987 (1)

Abel, T.

Y. Matsuura, T. Abel, and J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
[Crossref]

Y. Matsuura, T. Abel, J. Hirsch, and J. A. Harrington, “Single-bore hollow waveguide for delivery of near single mode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
[Crossref]

Alameda, J. B.

A. Wilk, J. C. Carter, M. Chrisp, A. M. Manuel, P. Mirkarimi, J. B. Alameda, and B. Mizaikoff, “Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing,” Anal. Chem. 85, 11205–11210 (2013).
[Crossref]

Amann, M. C.

Arnone, D.

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators B 140, 24–28 (2009).
[Crossref]

Baddela, N. K.

Bakhirkin, Y.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1, 014001 (2007).
[Crossref]

Barbe, A.

Bechara, J.

H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. (Wiley, 1994).

Benabid, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St.J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref]

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St.J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref]

Bledt, C. M.

C. M. Bledt, J. A. Harrington, and J. M. Kriesel, “Multilayer silver/dielectric thin-film coated hollow waveguides for sensor and laser power delivery applications,” Proc. SPIE 8218, 82180H (2012).
[Crossref]

Brown, D. A.

Brown, L. R.

Cajlakovic, M.

P. R. Fortes, A. Wilk, F. Seichter, M. Cajlakovic, S. Koestler, V. Ribitsch, U. Wachter, J. Vogt, P. Radermacher, C. Carter, I. M. Raimundo, and B. Mizaikoff, “Combined sensing platform for advance diagnostics in exhaled mouse breath,” Proc. SPIE 8570, 85700Q (2013).
[Crossref]

Camy-Peyret, C.

Capasso, F.

F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49, 111102 (2010).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Carter, C.

P. R. Fortes, A. Wilk, F. Seichter, M. Cajlakovic, S. Koestler, V. Ribitsch, U. Wachter, J. Vogt, P. Radermacher, C. Carter, I. M. Raimundo, and B. Mizaikoff, “Combined sensing platform for advance diagnostics in exhaled mouse breath,” Proc. SPIE 8570, 85700Q (2013).
[Crossref]

Carter, J. C.

A. Wilk, J. C. Carter, M. Chrisp, A. M. Manuel, P. Mirkarimi, J. B. Alameda, and B. Mizaikoff, “Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing,” Anal. Chem. 85, 11205–11210 (2013).
[Crossref]

Charlton, C.

C. Charlton, B. Temelkuran, G. Dellemann, and B. Mizaikoff, “Midinfrared sensors meet nanotechnology: trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides,” Appl. Phys. Lett. 86, 194102 (2005).
[Crossref]

C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, “Hollow-waveguide gas sensing with room-temperature quantum cascade lasers,” IEE Proc. 150, 306–309 (2003).

Charlton, C. M.

C. M. Charlton, B. T. Thompson, and B. Mizaikoff, “Hollow waveguide infrared spectroscopy and sensing,” in Frontiers in Chemical Sensors: Novel Principles and Techniques, G. Orellana and M. C. Moreno-Bondi, eds. (Springer-Verlag, 2005).

Chen, C.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[Crossref]

Chen, J.

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Chrisp, M.

A. Wilk, J. C. Carter, M. Chrisp, A. M. Manuel, P. Mirkarimi, J. B. Alameda, and B. Mizaikoff, “Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing,” Anal. Chem. 85, 11205–11210 (2013).
[Crossref]

Ciaffoni, L.

B. Cummings, M. L. Hamilton, L. Ciaffoni, T. R. Pragnell, R. Peverall, G. A. D. Ritchie, G. Hancock, and P. A. Robbins, “Laser-based absorption spectroscopy as a technique for rapid in-line analysis of respired gas concentrations of O2 and CO2,” J. Appl. Physiol. 111, 303–307 (2011).
[Crossref]

Couny, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St.J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref]

Croitoru, N.

B. T. Thompson, A. Inberg, N. Croitoru, and B. Mizaikoff, “Characterization of a mid-infrared hollow waveguide gas cell for the analysis of carbon monoxide and nitric oxide,” Appl. Spectrosc. 60, 266–271 (2006).
[Crossref]

C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, “Hollow-waveguide gas sensing with room-temperature quantum cascade lasers,” IEE Proc. 150, 306–309 (2003).

Cummings, B.

B. Cummings, M. L. Hamilton, L. Ciaffoni, T. R. Pragnell, R. Peverall, G. A. D. Ritchie, G. Hancock, and P. A. Robbins, “Laser-based absorption spectroscopy as a technique for rapid in-line analysis of respired gas concentrations of O2 and CO2,” J. Appl. Physiol. 111, 303–307 (2011).
[Crossref]

Day, T.

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators B 140, 24–28 (2009).
[Crossref]

de Melas, F.

C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, “Hollow-waveguide gas sensing with room-temperature quantum cascade lasers,” IEE Proc. 150, 306–309 (2003).

Dellemann, G.

C. Charlton, B. Temelkuran, G. Dellemann, and B. Mizaikoff, “Midinfrared sensors meet nanotechnology: trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides,” Appl. Phys. Lett. 86, 194102 (2005).
[Crossref]

Duxbury, G.

Faist, J.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Fan, S.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[Crossref]

Fetzer, G. J.

Fink, Y.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[Crossref]

Flaud, J. M.

Fortes, P. R.

P. R. Fortes, A. Wilk, F. Seichter, M. Cajlakovic, S. Koestler, V. Ribitsch, U. Wachter, J. Vogt, P. Radermacher, C. Carter, I. M. Raimundo, and B. Mizaikoff, “Combined sensing platform for advance diagnostics in exhaled mouse breath,” Proc. SPIE 8570, 85700Q (2013).
[Crossref]

Foulger, B.

E. L. Normand, R. J. Stokes, K. Hay, B. Foulger, and C. Lewis, “Advances in quantum cascade lasers for security and crime fighting,” Proc. SPIE 7838, 78380A (2011).
[Crossref]

Francis, D.

D. Francis, J. Hodgkinson, B. Livingstone, and R. P. Tatam, “Quantum cascade laser light propagation through hollow silica waveguides,” Appl. Phys. B 119, 75–86 (2015).
[Crossref]

D. Francis, J. Hodgkinson, and R. P. Tatam, “Hollow fibre waveguide gas cells,” U.S. patentPCT/GB2016/050789 (22March2016).

Gamache, R. R.

Gayraud, N.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20, 075301 (2009).
[Crossref]

George, R.

Goldman, A.

Griffiths, B. C.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20, 075301 (2009).
[Crossref]

Haan, D. J.

R. H. Micheels, K. Richardson, D. J. Haan, and J. A. Harrington, “FTIR based instrument employing a coiled hollow waveguide cell for rapid field analysis of volatile organic compounds,” Proc. SPIE 3540, 66–74 (1999).
[Crossref]

Hald, J.

J. A. Nwaboh, J. Hald, J. K. Lyngsø, J. C. Petersen, and O. Werhahn, “Measurements of CO2 in a multipass cell and in a hollow-core photonic bandgap fiber at 2  μm,” Appl. Phys. B 110, 187–194 (2013).
[Crossref]

Hamilton, M. L.

B. Cummings, M. L. Hamilton, L. Ciaffoni, T. R. Pragnell, R. Peverall, G. A. D. Ritchie, G. Hancock, and P. A. Robbins, “Laser-based absorption spectroscopy as a technique for rapid in-line analysis of respired gas concentrations of O2 and CO2,” J. Appl. Physiol. 111, 303–307 (2011).
[Crossref]

Hancock, G.

B. Cummings, M. L. Hamilton, L. Ciaffoni, T. R. Pragnell, R. Peverall, G. A. D. Ritchie, G. Hancock, and P. A. Robbins, “Laser-based absorption spectroscopy as a technique for rapid in-line analysis of respired gas concentrations of O2 and CO2,” J. Appl. Physiol. 111, 303–307 (2011).
[Crossref]

Hand, D. P.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20, 075301 (2009).
[Crossref]

Hangauer, A.

Harrington, J. A.

C. M. Bledt, J. A. Harrington, and J. M. Kriesel, “Multilayer silver/dielectric thin-film coated hollow waveguides for sensor and laser power delivery applications,” Proc. SPIE 8218, 82180H (2012).
[Crossref]

R. George and J. A. Harrington, “Infrared transmissive, hollow plastic waveguides with inner Ag/AgI coatings,” Appl. Opt. 44, 6449–6455 (2005).
[Crossref]

J. A. Harrington, “A review of IR transmitting hollow waveguides,” Fiber Integr. Opt. 19, 211–227 (2000).
[Crossref]

R. H. Micheels, K. Richardson, D. J. Haan, and J. A. Harrington, “FTIR based instrument employing a coiled hollow waveguide cell for rapid field analysis of volatile organic compounds,” Proc. SPIE 3540, 66–74 (1999).
[Crossref]

Y. Matsuura, T. Abel, and J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
[Crossref]

Y. Matsuura, T. Abel, J. Hirsch, and J. A. Harrington, “Single-bore hollow waveguide for delivery of near single mode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
[Crossref]

J. A. Harrington, “Theoretical foundations of infrared fiber optic transmission: hollow-core fibers,” in Infrared Fiber Optics and Their Applications (SPIE, 2004).

Hay, K.

E. L. Normand, R. J. Stokes, K. Hay, B. Foulger, and C. Lewis, “Advances in quantum cascade lasers for security and crime fighting,” Proc. SPIE 7838, 78380A (2011).
[Crossref]

Hayes, J. R.

Heidt, A. M.

Herndon, S.

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49, 111124 (2010).
[Crossref]

Hirsch, J.

Y. Matsuura, T. Abel, J. Hirsch, and J. A. Harrington, “Single-bore hollow waveguide for delivery of near single mode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
[Crossref]

Hodgkinson, J.

D. Francis, J. Hodgkinson, B. Livingstone, and R. P. Tatam, “Quantum cascade laser light propagation through hollow silica waveguides,” Appl. Phys. B 119, 75–86 (2015).
[Crossref]

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24, 1–59 (2013).
[Crossref]

D. Masiyano, J. Hodgkinson, and R. P. Tatam, “Use of diffuse reflections in tunable diode laser absorption spectroscopy: implications of laser speckle for gas absorption measurements,” Appl. Phys. B 90, 279–288 (2008).
[Crossref]

D. Francis, J. Hodgkinson, and R. P. Tatam, “Hollow fibre waveguide gas cells,” U.S. patentPCT/GB2016/050789 (22March2016).

Husson, N.

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Inberg, A.

B. T. Thompson, A. Inberg, N. Croitoru, and B. Mizaikoff, “Characterization of a mid-infrared hollow waveguide gas cell for the analysis of carbon monoxide and nitric oxide,” Appl. Spectrosc. 60, 266–271 (2006).
[Crossref]

C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, “Hollow-waveguide gas sensing with room-temperature quantum cascade lasers,” IEE Proc. 150, 306–309 (2003).

Jäger, W.

J. Manne, W. Jäger, and J. Tulip, “Sensitive detection of ammonia and ethylene with a pulsed quantum cascade laser using intra and interpulse spectroscopic techniques,” Appl. Phys. B. 94, 337–344 (2009).
[Crossref]

Joannopoulos, J. D.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[Crossref]

Kato, T.

M. Saito and T. Kato, “Fast infrared spectrometer for flowing gases by the use of a hollow fiber and a PtSi sensor array,” Infrared Phys. Technol. 48, 53–58 (2006).
[Crossref]

Kim, S.-S.

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators B 140, 24–28 (2009).
[Crossref]

Knight, J. C.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St.J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref]

Koestler, S.

P. R. Fortes, A. Wilk, F. Seichter, M. Cajlakovic, S. Koestler, V. Ribitsch, U. Wachter, J. Vogt, P. Radermacher, C. Carter, I. M. Raimundo, and B. Mizaikoff, “Combined sensing platform for advance diagnostics in exhaled mouse breath,” Proc. SPIE 8570, 85700Q (2013).
[Crossref]

Kriesel, J. M.

C. M. Bledt, J. A. Harrington, and J. M. Kriesel, “Multilayer silver/dielectric thin-film coated hollow waveguides for sensor and laser power delivery applications,” Proc. SPIE 8218, 82180H (2012).
[Crossref]

Langford, N.

Lewicki, R.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1, 014001 (2007).
[Crossref]

Lewis, C.

E. L. Normand, R. J. Stokes, K. Hay, B. Foulger, and C. Lewis, “Advances in quantum cascade lasers for security and crime fighting,” Proc. SPIE 7838, 78380A (2011).
[Crossref]

Livingstone, B.

D. Francis, J. Hodgkinson, B. Livingstone, and R. P. Tatam, “Quantum cascade laser light propagation through hollow silica waveguides,” Appl. Phys. B 119, 75–86 (2015).
[Crossref]

Luzinova, Y.

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators B 140, 24–28 (2009).
[Crossref]

Lyngsø, J. K.

J. A. Nwaboh, J. Hald, J. K. Lyngsø, J. C. Petersen, and O. Werhahn, “Measurements of CO2 in a multipass cell and in a hollow-core photonic bandgap fiber at 2  μm,” Appl. Phys. B 110, 187–194 (2013).
[Crossref]

Mackay, G. I.

H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. (Wiley, 1994).

MacPherson, W. N.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20, 075301 (2009).
[Crossref]

Manne, J.

J. Manne, W. Jäger, and J. Tulip, “Sensitive detection of ammonia and ethylene with a pulsed quantum cascade laser using intra and interpulse spectroscopic techniques,” Appl. Phys. B. 94, 337–344 (2009).
[Crossref]

Manuel, A. M.

A. Wilk, J. C. Carter, M. Chrisp, A. M. Manuel, P. Mirkarimi, J. B. Alameda, and B. Mizaikoff, “Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing,” Anal. Chem. 85, 11205–11210 (2013).
[Crossref]

Masiyano, D.

D. Masiyano, J. Hodgkinson, and R. P. Tatam, “Use of diffuse reflections in tunable diode laser absorption spectroscopy: implications of laser speckle for gas absorption measurements,” Appl. Phys. B 90, 279–288 (2008).
[Crossref]

Matsuura, Y.

Y. Matsuura, T. Abel, and J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
[Crossref]

Y. Matsuura, T. Abel, J. Hirsch, and J. A. Harrington, “Single-bore hollow waveguide for delivery of near single mode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
[Crossref]

McCulloch, M. T.

McCullogh, M.

McCurdy, M. R.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1, 014001 (2007).
[Crossref]

McManus, J. B.

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49, 111124 (2010).
[Crossref]

McNaghten, E. D.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20, 075301 (2009).
[Crossref]

Micheels, R. H.

R. H. Micheels, K. Richardson, D. J. Haan, and J. A. Harrington, “FTIR based instrument employing a coiled hollow waveguide cell for rapid field analysis of volatile organic compounds,” Proc. SPIE 3540, 66–74 (1999).
[Crossref]

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[Crossref]

Mirkarimi, P.

A. Wilk, J. C. Carter, M. Chrisp, A. M. Manuel, P. Mirkarimi, J. B. Alameda, and B. Mizaikoff, “Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing,” Anal. Chem. 85, 11205–11210 (2013).
[Crossref]

Mizaikoff, B.

A. Wilk, J. C. Carter, M. Chrisp, A. M. Manuel, P. Mirkarimi, J. B. Alameda, and B. Mizaikoff, “Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing,” Anal. Chem. 85, 11205–11210 (2013).
[Crossref]

P. R. Fortes, A. Wilk, F. Seichter, M. Cajlakovic, S. Koestler, V. Ribitsch, U. Wachter, J. Vogt, P. Radermacher, C. Carter, I. M. Raimundo, and B. Mizaikoff, “Combined sensing platform for advance diagnostics in exhaled mouse breath,” Proc. SPIE 8570, 85700Q (2013).
[Crossref]

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators B 140, 24–28 (2009).
[Crossref]

L. Wang and B. Mizaikoff, “Application of multivariate data-analysis techniques to biomedical diagnostics based on mid-infrared spectroscopy,” Anal. Bioanal. Chem. 391, 1641–1654 (2008).
[Crossref]

B. T. Thompson, A. Inberg, N. Croitoru, and B. Mizaikoff, “Characterization of a mid-infrared hollow waveguide gas cell for the analysis of carbon monoxide and nitric oxide,” Appl. Spectrosc. 60, 266–271 (2006).
[Crossref]

C. Charlton, B. Temelkuran, G. Dellemann, and B. Mizaikoff, “Midinfrared sensors meet nanotechnology: trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides,” Appl. Phys. Lett. 86, 194102 (2005).
[Crossref]

C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, “Hollow-waveguide gas sensing with room-temperature quantum cascade lasers,” IEE Proc. 150, 306–309 (2003).

C. M. Charlton, B. T. Thompson, and B. Mizaikoff, “Hollow waveguide infrared spectroscopy and sensing,” in Frontiers in Chemical Sensors: Novel Principles and Techniques, G. Orellana and M. C. Moreno-Bondi, eds. (Springer-Verlag, 2005).

Mücke, R.

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[Crossref]

Nelson, D. D.

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49, 111124 (2010).
[Crossref]

Newnham, D. A.

Normand, E.

Normand, E. L.

Numkam Fokoua, E.

Nwaboh, J. A.

J. A. Nwaboh, J. Hald, J. K. Lyngsø, J. C. Petersen, and O. Werhahn, “Measurements of CO2 in a multipass cell and in a hollow-core photonic bandgap fiber at 2  μm,” Appl. Phys. B 110, 187–194 (2013).
[Crossref]

Parkes, A. M.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20, 075301 (2009).
[Crossref]

Parry, J. P.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20, 075301 (2009).
[Crossref]

Petersen, J. C.

J. A. Nwaboh, J. Hald, J. K. Lyngsø, J. C. Petersen, and O. Werhahn, “Measurements of CO2 in a multipass cell and in a hollow-core photonic bandgap fiber at 2  μm,” Appl. Phys. B 110, 187–194 (2013).
[Crossref]

Petrovich, M. N.

Peverall, R.

B. Cummings, M. L. Hamilton, L. Ciaffoni, T. R. Pragnell, R. Peverall, G. A. D. Ritchie, G. Hancock, and P. A. Robbins, “Laser-based absorption spectroscopy as a technique for rapid in-line analysis of respired gas concentrations of O2 and CO2,” J. Appl. Physiol. 111, 303–307 (2011).
[Crossref]

Pickett, H. M.

Pittner, A. S.

Poletti, F.

Poynter, R. L.

Pragnell, T. R.

B. Cummings, M. L. Hamilton, L. Ciaffoni, T. R. Pragnell, R. Peverall, G. A. D. Ritchie, G. Hancock, and P. A. Robbins, “Laser-based absorption spectroscopy as a technique for rapid in-line analysis of respired gas concentrations of O2 and CO2,” J. Appl. Physiol. 111, 303–307 (2011).
[Crossref]

Radermacher, P.

P. R. Fortes, A. Wilk, F. Seichter, M. Cajlakovic, S. Koestler, V. Ribitsch, U. Wachter, J. Vogt, P. Radermacher, C. Carter, I. M. Raimundo, and B. Mizaikoff, “Combined sensing platform for advance diagnostics in exhaled mouse breath,” Proc. SPIE 8570, 85700Q (2013).
[Crossref]

Raimundo, I. M.

P. R. Fortes, A. Wilk, F. Seichter, M. Cajlakovic, S. Koestler, V. Ribitsch, U. Wachter, J. Vogt, P. Radermacher, C. Carter, I. M. Raimundo, and B. Mizaikoff, “Combined sensing platform for advance diagnostics in exhaled mouse breath,” Proc. SPIE 8570, 85700Q (2013).
[Crossref]

Ribitsch, V.

P. R. Fortes, A. Wilk, F. Seichter, M. Cajlakovic, S. Koestler, V. Ribitsch, U. Wachter, J. Vogt, P. Radermacher, C. Carter, I. M. Raimundo, and B. Mizaikoff, “Combined sensing platform for advance diagnostics in exhaled mouse breath,” Proc. SPIE 8570, 85700Q (2013).
[Crossref]

Richardson, D. J.

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibres: technology and applications,” Nanophotonics 2, 315–340 (2013).
[Crossref]

Richardson, D. R.

Richardson, K.

R. H. Micheels, K. Richardson, D. J. Haan, and J. A. Harrington, “FTIR based instrument employing a coiled hollow waveguide cell for rapid field analysis of volatile organic compounds,” Proc. SPIE 3540, 66–74 (1999).
[Crossref]

Rinsland, C. P.

Ritchie, G. A. D.

B. Cummings, M. L. Hamilton, L. Ciaffoni, T. R. Pragnell, R. Peverall, G. A. D. Ritchie, G. Hancock, and P. A. Robbins, “Laser-based absorption spectroscopy as a technique for rapid in-line analysis of respired gas concentrations of O2 and CO2,” J. Appl. Physiol. 111, 303–307 (2011).
[Crossref]

Robbins, P. A.

B. Cummings, M. L. Hamilton, L. Ciaffoni, T. R. Pragnell, R. Peverall, G. A. D. Ritchie, G. Hancock, and P. A. Robbins, “Laser-based absorption spectroscopy as a technique for rapid in-line analysis of respired gas concentrations of O2 and CO2,” J. Appl. Physiol. 111, 303–307 (2011).
[Crossref]

Rothman, L. S.

Ryder, W. L.

Saito, M.

M. Saito and T. Kato, “Fast infrared spectrometer for flowing gases by the use of a hollow fiber and a PtSi sensor array,” Infrared Phys. Technol. 48, 53–58 (2006).
[Crossref]

Sandoghchi, S. R.

Schiff, H. I.

H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. (Wiley, 1994).

Seichter, F.

P. R. Fortes, A. Wilk, F. Seichter, M. Cajlakovic, S. Koestler, V. Ribitsch, U. Wachter, J. Vogt, P. Radermacher, C. Carter, I. M. Raimundo, and B. Mizaikoff, “Combined sensing platform for advance diagnostics in exhaled mouse breath,” Proc. SPIE 8570, 85700Q (2013).
[Crossref]

Shorter, J. H.

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49, 111124 (2010).
[Crossref]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Slemr, F.

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[Crossref]

Smith, M. A. H.

St.J. Russell, P.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St.J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref]

Stokes, R. J.

E. L. Normand, R. J. Stokes, K. Hay, B. Foulger, and C. Lewis, “Advances in quantum cascade lasers for security and crime fighting,” Proc. SPIE 7838, 78380A (2011).
[Crossref]

Strzoda, R.

Takeuchi, E.

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators B 140, 24–28 (2009).
[Crossref]

Tatam, R. P.

D. Francis, J. Hodgkinson, B. Livingstone, and R. P. Tatam, “Quantum cascade laser light propagation through hollow silica waveguides,” Appl. Phys. B 119, 75–86 (2015).
[Crossref]

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24, 1–59 (2013).
[Crossref]

D. Masiyano, J. Hodgkinson, and R. P. Tatam, “Use of diffuse reflections in tunable diode laser absorption spectroscopy: implications of laser speckle for gas absorption measurements,” Appl. Phys. B 90, 279–288 (2008).
[Crossref]

D. Francis, J. Hodgkinson, and R. P. Tatam, “Hollow fibre waveguide gas cells,” U.S. patentPCT/GB2016/050789 (22March2016).

Temelkuran, B.

C. Charlton, B. Temelkuran, G. Dellemann, and B. Mizaikoff, “Midinfrared sensors meet nanotechnology: trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides,” Appl. Phys. Lett. 86, 194102 (2005).
[Crossref]

Thomas, E. L.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[Crossref]

Thompson, B. T.

B. T. Thompson, A. Inberg, N. Croitoru, and B. Mizaikoff, “Characterization of a mid-infrared hollow waveguide gas cell for the analysis of carbon monoxide and nitric oxide,” Appl. Spectrosc. 60, 266–271 (2006).
[Crossref]

C. M. Charlton, B. T. Thompson, and B. Mizaikoff, “Hollow waveguide infrared spectroscopy and sensing,” in Frontiers in Chemical Sensors: Novel Principles and Techniques, G. Orellana and M. C. Moreno-Bondi, eds. (Springer-Verlag, 2005).

Tittel, F. K.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1, 014001 (2007).
[Crossref]

Toth, R. A.

Tulip, J.

J. Manne, W. Jäger, and J. Tulip, “Sensitive detection of ammonia and ethylene with a pulsed quantum cascade laser using intra and interpulse spectroscopic techniques,” Appl. Phys. B. 94, 337–344 (2009).
[Crossref]

Vogt, J.

P. R. Fortes, A. Wilk, F. Seichter, M. Cajlakovic, S. Koestler, V. Ribitsch, U. Wachter, J. Vogt, P. Radermacher, C. Carter, I. M. Raimundo, and B. Mizaikoff, “Combined sensing platform for advance diagnostics in exhaled mouse breath,” Proc. SPIE 8570, 85700Q (2013).
[Crossref]

Wachter, U.

P. R. Fortes, A. Wilk, F. Seichter, M. Cajlakovic, S. Koestler, V. Ribitsch, U. Wachter, J. Vogt, P. Radermacher, C. Carter, I. M. Raimundo, and B. Mizaikoff, “Combined sensing platform for advance diagnostics in exhaled mouse breath,” Proc. SPIE 8570, 85700Q (2013).
[Crossref]

Wang, L.

L. Wang and B. Mizaikoff, “Application of multivariate data-analysis techniques to biomedical diagnostics based on mid-infrared spectroscopy,” Anal. Bioanal. Chem. 391, 1641–1654 (2008).
[Crossref]

Wehr, R.

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49, 111124 (2010).
[Crossref]

Weida, M.

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators B 140, 24–28 (2009).
[Crossref]

Werhahn, O.

J. A. Nwaboh, J. Hald, J. K. Lyngsø, J. C. Petersen, and O. Werhahn, “Measurements of CO2 in a multipass cell and in a hollow-core photonic bandgap fiber at 2  μm,” Appl. Phys. B 110, 187–194 (2013).
[Crossref]

Werle, P.

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[Crossref]

Wheeler, N. V.

Wilk, A.

P. R. Fortes, A. Wilk, F. Seichter, M. Cajlakovic, S. Koestler, V. Ribitsch, U. Wachter, J. Vogt, P. Radermacher, C. Carter, I. M. Raimundo, and B. Mizaikoff, “Combined sensing platform for advance diagnostics in exhaled mouse breath,” Proc. SPIE 8570, 85700Q (2013).
[Crossref]

A. Wilk, J. C. Carter, M. Chrisp, A. M. Manuel, P. Mirkarimi, J. B. Alameda, and B. Mizaikoff, “Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing,” Anal. Chem. 85, 11205–11210 (2013).
[Crossref]

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[Crossref]

Wood, E.

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49, 111124 (2010).
[Crossref]

Wysocki, G.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1, 014001 (2007).
[Crossref]

Young, C.

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators B 140, 24–28 (2009).
[Crossref]

Zahniser, M. S.

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49, 111124 (2010).
[Crossref]

Anal. Bioanal. Chem. (1)

L. Wang and B. Mizaikoff, “Application of multivariate data-analysis techniques to biomedical diagnostics based on mid-infrared spectroscopy,” Anal. Bioanal. Chem. 391, 1641–1654 (2008).
[Crossref]

Anal. Chem. (1)

A. Wilk, J. C. Carter, M. Chrisp, A. M. Manuel, P. Mirkarimi, J. B. Alameda, and B. Mizaikoff, “Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing,” Anal. Chem. 85, 11205–11210 (2013).
[Crossref]

Appl. Opt. (5)

Appl. Phys. B (4)

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[Crossref]

D. Francis, J. Hodgkinson, B. Livingstone, and R. P. Tatam, “Quantum cascade laser light propagation through hollow silica waveguides,” Appl. Phys. B 119, 75–86 (2015).
[Crossref]

J. A. Nwaboh, J. Hald, J. K. Lyngsø, J. C. Petersen, and O. Werhahn, “Measurements of CO2 in a multipass cell and in a hollow-core photonic bandgap fiber at 2  μm,” Appl. Phys. B 110, 187–194 (2013).
[Crossref]

D. Masiyano, J. Hodgkinson, and R. P. Tatam, “Use of diffuse reflections in tunable diode laser absorption spectroscopy: implications of laser speckle for gas absorption measurements,” Appl. Phys. B 90, 279–288 (2008).
[Crossref]

Appl. Phys. B. (1)

J. Manne, W. Jäger, and J. Tulip, “Sensitive detection of ammonia and ethylene with a pulsed quantum cascade laser using intra and interpulse spectroscopic techniques,” Appl. Phys. B. 94, 337–344 (2009).
[Crossref]

Appl. Phys. Lett. (1)

C. Charlton, B. Temelkuran, G. Dellemann, and B. Mizaikoff, “Midinfrared sensors meet nanotechnology: trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides,” Appl. Phys. Lett. 86, 194102 (2005).
[Crossref]

Appl. Spectrosc. (1)

Electron. Lett. (1)

Y. Matsuura, T. Abel, J. Hirsch, and J. A. Harrington, “Single-bore hollow waveguide for delivery of near single mode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
[Crossref]

Fiber Integr. Opt. (1)

J. A. Harrington, “A review of IR transmitting hollow waveguides,” Fiber Integr. Opt. 19, 211–227 (2000).
[Crossref]

IEE Proc. (1)

C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, “Hollow-waveguide gas sensing with room-temperature quantum cascade lasers,” IEE Proc. 150, 306–309 (2003).

Infrared Phys. Technol. (1)

M. Saito and T. Kato, “Fast infrared spectrometer for flowing gases by the use of a hollow fiber and a PtSi sensor array,” Infrared Phys. Technol. 48, 53–58 (2006).
[Crossref]

J. Appl. Physiol. (1)

B. Cummings, M. L. Hamilton, L. Ciaffoni, T. R. Pragnell, R. Peverall, G. A. D. Ritchie, G. Hancock, and P. A. Robbins, “Laser-based absorption spectroscopy as a technique for rapid in-line analysis of respired gas concentrations of O2 and CO2,” J. Appl. Physiol. 111, 303–307 (2011).
[Crossref]

J. Breath Res. (1)

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1, 014001 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (2)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24, 1–59 (2013).
[Crossref]

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20, 075301 (2009).
[Crossref]

Nanophotonics (1)

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibres: technology and applications,” Nanophotonics 2, 315–340 (2013).
[Crossref]

Nature (1)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St.J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref]

Opt. Eng. (2)

F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49, 111102 (2010).
[Crossref]

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49, 111124 (2010).
[Crossref]

Opt. Lett. (2)

Proc. SPIE (4)

E. L. Normand, R. J. Stokes, K. Hay, B. Foulger, and C. Lewis, “Advances in quantum cascade lasers for security and crime fighting,” Proc. SPIE 7838, 78380A (2011).
[Crossref]

R. H. Micheels, K. Richardson, D. J. Haan, and J. A. Harrington, “FTIR based instrument employing a coiled hollow waveguide cell for rapid field analysis of volatile organic compounds,” Proc. SPIE 3540, 66–74 (1999).
[Crossref]

C. M. Bledt, J. A. Harrington, and J. M. Kriesel, “Multilayer silver/dielectric thin-film coated hollow waveguides for sensor and laser power delivery applications,” Proc. SPIE 8218, 82180H (2012).
[Crossref]

P. R. Fortes, A. Wilk, F. Seichter, M. Cajlakovic, S. Koestler, V. Ribitsch, U. Wachter, J. Vogt, P. Radermacher, C. Carter, I. M. Raimundo, and B. Mizaikoff, “Combined sensing platform for advance diagnostics in exhaled mouse breath,” Proc. SPIE 8570, 85700Q (2013).
[Crossref]

Science (2)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Sens. Actuators B (1)

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators B 140, 24–28 (2009).
[Crossref]

Other (8)

OmniGuide, Inc., accessed 11May, 2016, http://www.omni-guide.com/ .

Accessed 11May, 2016, www.swagelok.com .

D. Francis, J. Hodgkinson, and R. P. Tatam, “Hollow fibre waveguide gas cells,” U.S. patentPCT/GB2016/050789 (22March2016).

Cascade Technologies, accessed 11May2016, http://www3.emersonprocess.com/cascade-technologies .

Polymicro Technologies, Phoenix, Arizona, USA, accessed 11May, 2016, http://www.molex.com/molex/products/group?channel=products&key=polymicro .

J. A. Harrington, “Theoretical foundations of infrared fiber optic transmission: hollow-core fibers,” in Infrared Fiber Optics and Their Applications (SPIE, 2004).

C. M. Charlton, B. T. Thompson, and B. Mizaikoff, “Hollow waveguide infrared spectroscopy and sensing,” in Frontiers in Chemical Sensors: Novel Principles and Techniques, G. Orellana and M. C. Moreno-Bondi, eds. (Springer-Verlag, 2005).

H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. (Wiley, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Schematic showing the construction of a hollow silica waveguide. The values indicate the radial thicknesses of the silica and acrylate of the smallest (300 μm bore diameter) and largest (1000 μm bore diameter) commercially available waveguides from Polymicro Technologies [19].
Fig. 2.
Fig. 2. Intrapulse QCL spectroscopy. Typical traces obtained from the average of 1000 pulses recorded in (a) laboratory air and (b) with the beam passing through 2.5% methane in a 165 mm path length gas cell.
Fig. 3.
Fig. 3. HSW gas cell constructed using modified gas fittings. The size of the fittings is exaggerated in the image.
Fig. 4.
Fig. 4. Designs for modified Swagelok fitting gas and light entry and exit ports. Brewster-angled machining with (a) 15 mm CaF 2 windows and (b) recessed 5 mm windows. The photographs show ports built with recessed 5 mm windows using (c) 1/8 in. fittings with the 1000 μm bore HSW and (d) using 1/16 in. fittings with the 300 μm bore HSW. Drawings shown in (a) and (b) are redrawn and modified versions of images obtained from [42].
Fig. 5.
Fig. 5. (a) Design for the use of a straight union gas fitting to connect two sections of HSW to produce a 10 m long gas cell. Redrawn and modified version of the image obtained from [42]. (b) Experimental data showing signal attenuation associated with the gap introduced between two sections of waveguide and a cubic fit.
Fig. 6.
Fig. 6. Normalized absorption profiles calculated from the data shown in Fig. 6 for (a) the high concentration range ( 1000 to 100 ppm) and (b) the low concentration range ( 10 to 1 ppm).
Fig. 7.
Fig. 7. Normalized absorption data with the corresponding Lorentzian functions fitted to both peaks. The data were obtained in the presence of methane at concentrations of (a) 1000 ppm and (b) 2 ppm.
Fig. 8.
Fig. 8. Methane concentration measurements made using the 5 m long, 1000 μm bore diameter gas cell. These were calculated from the measured absorption data and known line strength and half-width values using Eqs. (3)–(5).
Fig. 9.
Fig. 9. Pulses in the presence of 200 ppm methane recorded simultaneously through an HSW cell and an astigmatic Herriott cell. The difference in arrival time of photons after passing through the two cells can be seen from the separation of the traces on the time ( x ) axis.
Fig. 10.
Fig. 10. (a) Mean pulse amplitude variation data for HSW and Herriott cells and (b) the Allan–Werle deviation of this data.
Fig. 11.
Fig. 11. Plots of the absorption difference recorded over time for (a) the HSW cell and (b) the Herriott cell as methane fills and is evacuated from the cells. The response time Δ t is shown for both cells for both the rise and the fall.

Tables (2)

Tables Icon

Table 1. Summary of Hollow-Waveguide-Based Gas Sensors Used in Infrared Spectroscopy

Tables Icon

Table 2. Summary of Performance Parameters for the Three HSW Gas Cells

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 exp ( α l ) ,
α = C mol S γ π [ γ 2 + ( ν ν 0 ) 2 ] ,
A = ln ( V CH 4 V air ) ,
F ( x ) = p 1 π [ p 3 2 ( x p 2 ) 2 + p 3 2 ] + p 4 π [ p 6 2 ( x p 5 ) 2 + p 6 2 ] + C .
α = C mol ( S 1 γ 1 π [ γ 1 2 + ( ν ν 01 ) 2 ] + S 2 γ 2 π [ γ 2 2 + ( ν ν 02 ) 2 ] ) ,

Metrics