Abstract

The low-biased, fast, airborne, short-range, and range-resolved determination of atmospheric wind speeds plays a key role in wake vortex and turbulence mitigation strategies and would improve flight safety, comfort, and economy. In this work, a concept for an airborne, UV, direct-detection Doppler wind lidar receiver is presented. A monolithic, tilted, field-widened, fringe-imaging Michelson interferometer (FWFIMI) combines the advantages of low angular sensitivity, high thermo-mechanical stability, independence of the specific atmospheric conditions, and potential for fast data evaluation. Design and integration of the FWFIMI into a lidar receiver concept are described. Simulations help to evaluate the receiver design and prospect sufficient performance under different atmospheric conditions.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer

Mingjia Shangguan, Haiyun Xia, Chong Wang, Jiawei Qiu, Guoliang Shentu, Qiang Zhang, Xiankang Dou, and Jian-wei Pan
Opt. Express 24(17) 19322-19336 (2016)

Airborne forward-pointing UV Rayleigh lidar for remote clear air turbulence detection: system design and performance

Patrick Vrancken, Martin Wirth, Gerhard Ehret, Hervé Barny, Philippe Rondeau, and Henk Veerman
Appl. Opt. 55(32) 9314-9328 (2016)

Aircraft wake vortex and turbulence measurement under near-ground effect using coherent Doppler lidar

Songhua Wu, Xiaochun Zhai, and Bingyi Liu
Opt. Express 27(2) 1142-1163 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Airbus Customer Services, “Flight operations briefing notes—adverse weather operations—optimum use of the weather radar,” http://www.airbus.com/fileadmin/media_gallery/files/safety_library_items/AirbusSafetyLib_-FLT_OPS-ADV_WX-SEQ07.pdf (2007).
  2. J. Baynes and P. Tyrdy, “Rockwell Collins multiscan threattrack TM weather radar,” Rockwell Collins Press release (4February2014. https://www.rockwellcollins.com/Data/News/2014_Cal_Year/CS/FY14CSNR22-ThreatTrack.aspx .
  3. A. P. Tvaryanas, “Epidemiology of turbulence-related injuries in airline cabin crew,” Aviat. Space Environ. Med. 74, 970–976 (2003).
  4. J. K. Evans, “An updated examination of aviation accidents associated with turbulence, wind shear and thunderstorm,” (Analytical Mechanics Associates, Inc., 2014) http://ntrs.nasa.gov/search.jsp?R=20160005906 .
  5. F. Holzäpfel, A. Stephan, T. Heel, and S. Körner, “Enhanced wake vortex decay in ground proximity triggered by plate lines,” Aircr. Eng. 88, 206–214 (2016).
    [Crossref]
  6. G. Looye, T. Lombaerts, and T. Kier, “Design and flight testing of feedback control laws,” (The DLR Project Wetter & Fliegen, German Aerospace Center, 2012), pp. 162–170.
  7. J. Ehlers, D. Fischenberg, and D. Niedermeier, “Wake impact alleviation control based on wake identification,” J. Aircr. 52, 2077–2089 (2015).
    [Crossref]
  8. J. Ehlers and N. Fezans, “Airborne Doppler lidar sensor parameter analysis for wake vortex impact alleviation purposes,” in Advances in Aerospace Guidance, Navigation and Control: Selected Papers of the Third CEAS Specialist Conference on Guidance, Navigation and Control held in Toulouse, J. Bordeneuve-Guibé, A. Drouin, and C. Roos, eds. (Springer, 2015), pp. 433–453.
  9. J. Schwithal and N. Fezans, Institut für Flugsystemtechnik (FT), German Aerospace Center (DLR), Lilienthalplatz 7, 38108 Braunschweig, Germany (personal communication, 2016).
  10. N. Fezans, J. Schwithal, and D. Fischenberg, “In-flight remote sensing and characterization of gusts, turbulence, and wake vortices,” in Deutscher Luft- und Raumfahrtkongress, Rostock, Germany, 2015.
  11. S. I. N. Banakh and A. Viktor, Coherent Doppler Wind Lidars in a Turbulent Atmosphere (Artech House, 2013).
  12. V. A. Banakh, I. N. Smalikho, and C. Werner, “Effect of aerosol particle microstructure on cw Doppler lidar signal statistics,” Appl. Opt. 39, 5393–5402 (2000).
    [Crossref]
  13. R. L. McCally, “Laser eye safety research at apl,” Johns Hopkins APL Tech. Dig. 26, 46–55 (2005).
  14. O. Reitebuch, C. Werner, I. Leike, P. Delville, P. H. Flamant, A. Cress, and D. Engelbart, “Experimental validation of wind profiling performed by the airborne 10-μm heterodyne Doppler lidar wind,” J. Atmos. Ocean. Technol. 18, 1331–1344 (2001).
    [Crossref]
  15. F. Köpp, S. Rahm, and I. Smalikho, “Characterization of aircraft wake vortices by 2-μm pulsed Doppler lidar,” J. Atmos. Ocean. Technol. 21, 194–206 (2004).
    [Crossref]
  16. H. Inokuchi, H. Tanaka, and T. Ando, “Development of an onboard Doppler lidar for flight safety,” J. Aircr. 46, 1411–1415 (2009).
    [Crossref]
  17. H. Inokuchi, M. Furuta, and T. Inagaki, “High altitude turbulence detection using an airborne Doppler lidar,” in 29th Congress of the International Council of the Aeronautical Sciences (ICAS), St. Petersburg, Russia, 7–12 September2014.
  18. I. N. Smalikho, V. A. Banakh, F. Holzäpfel, and S. Rahm, “Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar,” Opt. Express 23, A1194–A1207 (2015).
    [Crossref]
  19. A. Behrendt, S. Pal, V. Wulfmeyer, A. Valdebenito, and G. Lammel, “A novel approach for the characterization of transport and optical properties of aerosol particles near sources– i. measurement of particle backscatter coefficient maps with a scanning UV lidar,” Atmos. Environ. 45, 2795–2802 (2011).
    [Crossref]
  20. C. Flesia and C. L. Korb, “Theory of the double-edge molecular technique for Doppler lidar wind measurement,” Appl. Opt. 38, 432–440 (1999).
    [Crossref]
  21. Y. Durand, R. Meynart, M. Endemann, E. Chinal, D. Morançais, T. Schröder, and O. Reitebuch, “Manufacturing of an airborne demonstrator of ALADIN: the direct detection Doppler wind lidar for ADM-aeolus,” Proc. SPIE 5984, 598401 (2005).
    [Crossref]
  22. N. P. Schmitt, W. Rehm, T. Pistner, P. Zeller, H. Diehl, and P. Nav’e, “The awiator airborne lidar turbulence sensor,” Aerosp. Sci. Technol. 11, 546–552 (2007).
    [Crossref]
  23. G. J. Rabadan, N. P. Schmitt, T. Pistner, and W. Rehm, “Airborne lidar for automatic feedforward control of turbulent in-flight phenomena,” J. Aircr. 47, 392–403 (2010).
    [Crossref]
  24. M. C. Hirschberger and G. Ehret, “Simulation and high-precision wavelength determination of noisy 2D Fabry-Perot interferometric rings for direct-detection Doppler lidar and laser spectroscopy,” Appl. Phys. B 103, 207–222 (2011).
    [Crossref]
  25. J. A. McKay, “Assessment of a multibeam fizeau wedge interferometer for Doppler wind lidar,” Appl. Opt. 41, 1760–1767 (2002).
    [Crossref]
  26. Z. Liu and T. Kobayashi, “Differential discrimination technique for incoherent Doppler lidar to measure atmospheric wind and backscatter ratio,” Opt. Rev. 3, 47–52 (1996).
    [Crossref]
  27. D. Bruneau, “Mach-Zehnder interferometer as a spectral analyzer for molecular Doppler wind lidar,” Appl. Opt. 40, 391–399 (2001).
    [Crossref]
  28. D. Bruneau, “Fringe-imaging Mach-Zehnder interferometer as a spectral analyzer for molecular Doppler wind lidar,” Appl. Opt. 41, 503–510 (2002).
    [Crossref]
  29. D. Bruneau and J. Pelon, “Simultaneous measurements of particle backscattering and extinction coefficients and wind velocity by lidar with a Mach-Zehnder interferometer: principle of operation and performance assessment,” Appl. Opt. 42, 1101–1114 (2003).
    [Crossref]
  30. C. J. Grund and S. Tucker, “Optical autocovariance wind lidar (OAWL): a new approach to direct-detection Doppler wind profiling,” in Fifth Symposium on Lidar Atmospheric Applications, Seattle, Washington (American Meteorological Society, 2011).
  31. R. Atlas, R. N. Hoffman, Z. Ma, G. D. Emmitt, and S. A. Wood, S. Greco, S. Tucker, L. Bucci, B. Annane, R. M. Hardesty, and S. Murillo, “Observing system simulation experiments (osses) to evaluate the potential impact of an optical autocovariance wind lidar (OAWL) on numerical weather prediction,” J. Atmos. Ocean. Technol. 32, 1593–1613 (2015).
    [Crossref]
  32. J. A. Smith and X. Chu, “Investigation of a field-widened Mach-Zehnder receiver to extend Fe Doppler lidar wind measurements from the thermosphere to the ground,” Appl. Opt. 55, 1366–1380 (2016).
    [Crossref]
  33. N. Cézard, A. Dolfi-Bouteyre, J.-P. Huignard, and P. H. Flamant, “Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355 nm Rayleigh–Mie lidar,” Appl. Opt. 48, 2321–2332 (2009).
    [Crossref]
  34. G. Hansen, “Die sichtbarkeit der interferenzen beim Michelson- und Twyman-interferometer,” Zeitschrift für Instrumentenkunde 61, 411 (1941).
  35. R. L. Hilliard and G. G. Shepherd, “Wide-angle Michelson interferometer for measuring Doppler line widths*,” J. Opt. Soc. Am. 56, 362–369 (1966).
    [Crossref]
  36. G. G. Shepherd, W. A. Gault, D. W. Miller, Z. Pasturczyk, S. F. Johnston, P. R. Kosteniuk, J. W. Haslett, D. J. W. Kendall, and J. R. Wimperis, “Wamdii: wide-angle Michelson Doppler imaging interferometer for spacelab,” Appl. Opt. 24, 1571–1584 (1985).
    [Crossref]
  37. J. M. Harlander, C. R. Englert, D. D. Babcock, and F. L. Roesler, “Design and laboratory tests of a Doppler asymmetric spatial heterodyne (DASH) interferometer for upper atmospheric wind and temperature observations,” Opt. Express 18, 26430–26440 (2010).
    [Crossref]
  38. M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar wales: system design and performance,” Appl. Phys. B 96, 201–213 (2009).
    [Crossref]
  39. P. Vrancken, M. Wirth, B. Ehret, G. Witschas, H. Veermann, R. Tump, H. Barny, P. Rondeau, A. Dolfi-Bouteyre, and L. Lombard, “Flight tests of the delicate airborne lidar system for remote clear air turbulence detection,” in 27th International Laser Radar Conference, New York, 2015.
  40. D. Bruneau, J. Pelon, F. Blouzon, J. Spatazza, P. Genau, G. Buchholtz, N. Amarouche, A. Abchiche, and O. Aouji, “355-nm high spectral resolution airborne lidar LNG: system description and first results,” Appl. Opt. 54, 8776 (2015).
    [Crossref]
  41. G. Avila and P. Singh, “Optical fiber scrambling and light pipes for high accuracy radial velocities measurements,” Proc. SPIE 7018, 70184W (2008).
    [Crossref]
  42. B. Witschas, “Light scattering on molecules in the atmosphere,” in Atmospheric Physics: Background–Methods–Trends, U. Schumann, ed. (Springer, 2012), pp. 69–83.
  43. T. Wriedt, “Mie theory: a review,” in The Mie Theory: Basics and Applications, W. Hergert and T. Wriedt, eds. (Springer, 2012), pp. 53–71.
  44. R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33 (2001).
    [Crossref]
  45. M. H. Rausch, A. Heller, J. Herbst, T. M. Koller, M. Bahlmann, P. S. Schulz, P. Wasserscheid, and A. P. Fröba, “Mutual and thermal diffusivity of binary mixtures of the ionic liquids [BMIM][C(CN)3] and [BMIM][B(CN)4] with dissolved CO2 by dynamic light scattering,” J. Phys. Chem. B 118, 4636–4646 (2014).
    [Crossref]
  46. S. Groß, V. Freudenthaler, M. Wirth, and B. Weinzierl, “Towards an aerosol classification scheme for future earthcare lidar observations and implications for research needs,” Atmos. Sci. Lett. 16, 77–82 (2015).
    [Crossref]
  47. G. Tenti, C. D. Boley, and R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).
  48. B. Witschas, “Analytical model for Rayleigh-Brillouin line shapes in air,” Appl. Opt. 50, 267–270 (2011).
    [Crossref]
  49. R. T. H. Collis and P. B. Russell, “Lidar measurement of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed., Vol. 14 of Topics in Applied Physics, (Springer, 1976), pp. 71–151.
  50. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
    [Crossref]
  51. J. M. Vaughan, D. W. Brown, C. Nash, S. B. Alejandro, and G. G. Koenig, “Atlantic atmospheric aerosol studies: 2. compendium of airborne backscatter measurements at 10.6 μm,” J. Geophys. Res. 100, 1043–1065 (1995).
    [Crossref]
  52. D. J. Moorhouse and R. J. Woodcock, “Background information and user guide for MIL-F-8785C, military specification-flying qualities of piloted airplanes,” (Air Force Wright Aeronautical Labs Wright-Patterson Air Force Base, 1982)..
  53. R. M. Measures, Laser Remote Sensing (Wiley, 1992).
  54. M. I. Mishchenko, “Directional radiometry and radiative transfer: The convoluted path from centuries-old phenomenology to physical optics,” J. Quant. Spectrosc. Radiat. Transfer 146, 4–33 (2014).
    [Crossref]
  55. U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-aeolus. part ii: Simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26, 2516–2530 (2009).
    [Crossref]
  56. J. A. McKay, “Modeling of direct detection Doppler wind lidar. i. the edge technique,” Appl. Opt. 37, 6480–6486 (1998).
    [Crossref]
  57. M. J. McGill and J. D. Spinhirne, “Comparison of two direct-detection Doppler lidar techniques,” Opt. Eng. 37, 2675–2686 (1998).
    [Crossref]
  58. J. A. McKay, “Modeling of direct detection Doppler wind lidar. ii. the fringe imaging technique,” Appl. Opt. 37, 6487–6493 (1998).
    [Crossref]
  59. J. Wu, J. Wang, and P. B. Hays, “Performance of a circle-to-line optical system for a Fabry-Perot interferometer: a laboratory study,” Appl. Opt. 33, 7823–7828 (1994).
    [Crossref]
  60. O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-aeolus. Part I: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
    [Crossref]
  61. O. Reitebuch, Institut für Physik der Atmosphäre (IPA), German Aerospace Center (DLR), Oberpfaffenhofen, Münchner Str. 20, 82234 Wessling, Germany (personal communication, 2016).
  62. K. Stelmaszczyk, M. Dell’Aglio, S. Chudzyński, T. Stacewicz, and L. Wöste, “Analytical function for lidar geometrical compression form-factor calculations,” Appl. Opt. 44, 1323–1331 (2005).
    [Crossref]
  63. O. Novák, I. S. Falconer, R. Sanginés, M. Lattemann, R. N. Tarrant, D. R. McKenzie, and M. M. M. Bilek, “Fizeau interferometer system for fast high resolution studies of spectral line shapes,” Rev. Sci. Instrum. 82, 023105 (2011).
    [Crossref]
  64. A. M. Title, “Imaging Michelson interferometers,” in Observing Photons in Space: A Guide to Experimental Space Astronomy, M. C. E. Huber, A. Pauluhn, J. L. Culhane, J. G. Timothy, K. Wilhelm, and A. Zehnder, eds. (Springer, 2013), pp. 349–361.
  65. A. M. Title and H. E. Ramsey, “Improvements in birefringent filters. 6: analog birefringent elements,” Appl. Opt. 19, 2046–2058 (1980).
    [Crossref]
  66. Z. Cheng, D. Liu, J. Luo, Y. Yang, Y. Zhou, Y. Zhang, L. Duan, L. Su, L. Yang, Y. Shen, K. Wang, and J. Bai, “Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: theoretical framework,” Opt. Express 23, 12117–12134 (2015).
    [Crossref]
  67. SCHOTT, “Refractive index and dispersion,” SCHOTT Technical Information, TIE-29, 2007.
  68. SCHOTT, “Temperature coefficient of the refractive index,” SCHOTT Technical Information, TIE-19, 2008.
  69. S. Mahadevan, J. Ge, C. DeWitt, J. C. van Eyken, and G. Friedman, “Design of a stable fixed delay interferometer prototype for the ET project,” Proc. SPIE 5492, 615–623 (2004).
  70. X. Wan, J. Ge, and Z. Chen, “Development of stable monolithic wide-field Michelson interferometers,” Appl. Opt. 50, 4105–4114 (2011).
    [Crossref]
  71. J. M. Harlander and C. Englert, “Design of a real-fringe DASH interferometer for observations of thermospheric winds from a small satellite,” in Imaging and Applied Optics, OSA Technical Digest (online) (Optical Society of America, 2013), paper FW1D.2.
  72. D. Liu, C. Hostetler, I. Miller, A. Cook, and J. Hair, “System analyis of a tilted field-widened Michelson interferometer for high spectral resolution lidar,” Opt. Express 20, 1406–1420 (2012).
    [Crossref]
  73. G. Fortunato, “L’interféromètre de Michelson, quelques aspects théoriques et expérimentaux,” Bulletin de l’Union des Physiciens 91, 15–56 (1997).
  74. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).
  75. L. Rodriguez-Cobo, M. Lomer, C. Galindez, and J. M. Lopez-Higuera, “Speckle characterization in multimode fibers for sensing applications,” Proc. SPIE 8413, 84131R (2012).
  76. Hamamatsu, PMT Handbook, version 3 (Hamamatsu Photonics, 2007).
  77. J.-M. Gagné, J.-P. Saint-Dizier, and M. Picard, “Méthode d’echantillonnage des fonctions déterministes en spectroscopie: application à un spectromètre multicanal par comptage photonique,” Appl. Opt. 13, 581–588 (1974).
    [Crossref]
  78. U. Paffrath, “Performance assessment of the Aeolus Doppler wind lidar prototype,” Dissertation DLR-FB–2006-2012 (DLR-Forschungsbericht, 2006).
  79. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
    [Crossref]

2016 (2)

F. Holzäpfel, A. Stephan, T. Heel, and S. Körner, “Enhanced wake vortex decay in ground proximity triggered by plate lines,” Aircr. Eng. 88, 206–214 (2016).
[Crossref]

J. A. Smith and X. Chu, “Investigation of a field-widened Mach-Zehnder receiver to extend Fe Doppler lidar wind measurements from the thermosphere to the ground,” Appl. Opt. 55, 1366–1380 (2016).
[Crossref]

2015 (6)

Z. Cheng, D. Liu, J. Luo, Y. Yang, Y. Zhou, Y. Zhang, L. Duan, L. Su, L. Yang, Y. Shen, K. Wang, and J. Bai, “Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: theoretical framework,” Opt. Express 23, 12117–12134 (2015).
[Crossref]

I. N. Smalikho, V. A. Banakh, F. Holzäpfel, and S. Rahm, “Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar,” Opt. Express 23, A1194–A1207 (2015).
[Crossref]

D. Bruneau, J. Pelon, F. Blouzon, J. Spatazza, P. Genau, G. Buchholtz, N. Amarouche, A. Abchiche, and O. Aouji, “355-nm high spectral resolution airborne lidar LNG: system description and first results,” Appl. Opt. 54, 8776 (2015).
[Crossref]

J. Ehlers, D. Fischenberg, and D. Niedermeier, “Wake impact alleviation control based on wake identification,” J. Aircr. 52, 2077–2089 (2015).
[Crossref]

R. Atlas, R. N. Hoffman, Z. Ma, G. D. Emmitt, and S. A. Wood, S. Greco, S. Tucker, L. Bucci, B. Annane, R. M. Hardesty, and S. Murillo, “Observing system simulation experiments (osses) to evaluate the potential impact of an optical autocovariance wind lidar (OAWL) on numerical weather prediction,” J. Atmos. Ocean. Technol. 32, 1593–1613 (2015).
[Crossref]

R. Atlas, R. N. Hoffman, Z. Ma, G. D. Emmitt, and S. A. Wood, S. Greco, S. Tucker, L. Bucci, B. Annane, R. M. Hardesty, and S. Murillo, “Observing system simulation experiments (osses) to evaluate the potential impact of an optical autocovariance wind lidar (OAWL) on numerical weather prediction,” J. Atmos. Ocean. Technol. 32, 1593–1613 (2015).
[Crossref]

S. Groß, V. Freudenthaler, M. Wirth, and B. Weinzierl, “Towards an aerosol classification scheme for future earthcare lidar observations and implications for research needs,” Atmos. Sci. Lett. 16, 77–82 (2015).
[Crossref]

2014 (2)

M. H. Rausch, A. Heller, J. Herbst, T. M. Koller, M. Bahlmann, P. S. Schulz, P. Wasserscheid, and A. P. Fröba, “Mutual and thermal diffusivity of binary mixtures of the ionic liquids [BMIM][C(CN)3] and [BMIM][B(CN)4] with dissolved CO2 by dynamic light scattering,” J. Phys. Chem. B 118, 4636–4646 (2014).
[Crossref]

M. I. Mishchenko, “Directional radiometry and radiative transfer: The convoluted path from centuries-old phenomenology to physical optics,” J. Quant. Spectrosc. Radiat. Transfer 146, 4–33 (2014).
[Crossref]

2012 (2)

L. Rodriguez-Cobo, M. Lomer, C. Galindez, and J. M. Lopez-Higuera, “Speckle characterization in multimode fibers for sensing applications,” Proc. SPIE 8413, 84131R (2012).

D. Liu, C. Hostetler, I. Miller, A. Cook, and J. Hair, “System analyis of a tilted field-widened Michelson interferometer for high spectral resolution lidar,” Opt. Express 20, 1406–1420 (2012).
[Crossref]

2011 (5)

B. Witschas, “Analytical model for Rayleigh-Brillouin line shapes in air,” Appl. Opt. 50, 267–270 (2011).
[Crossref]

X. Wan, J. Ge, and Z. Chen, “Development of stable monolithic wide-field Michelson interferometers,” Appl. Opt. 50, 4105–4114 (2011).
[Crossref]

O. Novák, I. S. Falconer, R. Sanginés, M. Lattemann, R. N. Tarrant, D. R. McKenzie, and M. M. M. Bilek, “Fizeau interferometer system for fast high resolution studies of spectral line shapes,” Rev. Sci. Instrum. 82, 023105 (2011).
[Crossref]

A. Behrendt, S. Pal, V. Wulfmeyer, A. Valdebenito, and G. Lammel, “A novel approach for the characterization of transport and optical properties of aerosol particles near sources– i. measurement of particle backscatter coefficient maps with a scanning UV lidar,” Atmos. Environ. 45, 2795–2802 (2011).
[Crossref]

M. C. Hirschberger and G. Ehret, “Simulation and high-precision wavelength determination of noisy 2D Fabry-Perot interferometric rings for direct-detection Doppler lidar and laser spectroscopy,” Appl. Phys. B 103, 207–222 (2011).
[Crossref]

2010 (2)

2009 (5)

N. Cézard, A. Dolfi-Bouteyre, J.-P. Huignard, and P. H. Flamant, “Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355 nm Rayleigh–Mie lidar,” Appl. Opt. 48, 2321–2332 (2009).
[Crossref]

H. Inokuchi, H. Tanaka, and T. Ando, “Development of an onboard Doppler lidar for flight safety,” J. Aircr. 46, 1411–1415 (2009).
[Crossref]

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-aeolus. part ii: Simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26, 2516–2530 (2009).
[Crossref]

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar wales: system design and performance,” Appl. Phys. B 96, 201–213 (2009).
[Crossref]

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-aeolus. Part I: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
[Crossref]

2008 (1)

G. Avila and P. Singh, “Optical fiber scrambling and light pipes for high accuracy radial velocities measurements,” Proc. SPIE 7018, 70184W (2008).
[Crossref]

2007 (1)

N. P. Schmitt, W. Rehm, T. Pistner, P. Zeller, H. Diehl, and P. Nav’e, “The awiator airborne lidar turbulence sensor,” Aerosp. Sci. Technol. 11, 546–552 (2007).
[Crossref]

2005 (3)

Y. Durand, R. Meynart, M. Endemann, E. Chinal, D. Morançais, T. Schröder, and O. Reitebuch, “Manufacturing of an airborne demonstrator of ALADIN: the direct detection Doppler wind lidar for ADM-aeolus,” Proc. SPIE 5984, 598401 (2005).
[Crossref]

R. L. McCally, “Laser eye safety research at apl,” Johns Hopkins APL Tech. Dig. 26, 46–55 (2005).

K. Stelmaszczyk, M. Dell’Aglio, S. Chudzyński, T. Stacewicz, and L. Wöste, “Analytical function for lidar geometrical compression form-factor calculations,” Appl. Opt. 44, 1323–1331 (2005).
[Crossref]

2004 (2)

F. Köpp, S. Rahm, and I. Smalikho, “Characterization of aircraft wake vortices by 2-μm pulsed Doppler lidar,” J. Atmos. Ocean. Technol. 21, 194–206 (2004).
[Crossref]

S. Mahadevan, J. Ge, C. DeWitt, J. C. van Eyken, and G. Friedman, “Design of a stable fixed delay interferometer prototype for the ET project,” Proc. SPIE 5492, 615–623 (2004).

2003 (2)

2002 (2)

2001 (3)

D. Bruneau, “Mach-Zehnder interferometer as a spectral analyzer for molecular Doppler wind lidar,” Appl. Opt. 40, 391–399 (2001).
[Crossref]

O. Reitebuch, C. Werner, I. Leike, P. Delville, P. H. Flamant, A. Cress, and D. Engelbart, “Experimental validation of wind profiling performed by the airborne 10-μm heterodyne Doppler lidar wind,” J. Atmos. Ocean. Technol. 18, 1331–1344 (2001).
[Crossref]

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33 (2001).
[Crossref]

2000 (1)

1999 (1)

1998 (3)

1997 (1)

G. Fortunato, “L’interféromètre de Michelson, quelques aspects théoriques et expérimentaux,” Bulletin de l’Union des Physiciens 91, 15–56 (1997).

1996 (1)

Z. Liu and T. Kobayashi, “Differential discrimination technique for incoherent Doppler lidar to measure atmospheric wind and backscatter ratio,” Opt. Rev. 3, 47–52 (1996).
[Crossref]

1995 (2)

J. M. Vaughan, D. W. Brown, C. Nash, S. B. Alejandro, and G. G. Koenig, “Atlantic atmospheric aerosol studies: 2. compendium of airborne backscatter measurements at 10.6 μm,” J. Geophys. Res. 100, 1043–1065 (1995).
[Crossref]

A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
[Crossref]

1994 (1)

1985 (1)

1980 (1)

1974 (2)

J.-M. Gagné, J.-P. Saint-Dizier, and M. Picard, “Méthode d’echantillonnage des fonctions déterministes en spectroscopie: application à un spectromètre multicanal par comptage photonique,” Appl. Opt. 13, 581–588 (1974).
[Crossref]

G. Tenti, C. D. Boley, and R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

1966 (1)

1965 (1)

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
[Crossref]

1941 (1)

G. Hansen, “Die sichtbarkeit der interferenzen beim Michelson- und Twyman-interferometer,” Zeitschrift für Instrumentenkunde 61, 411 (1941).

Abchiche, A.

Alejandro, S. B.

J. M. Vaughan, D. W. Brown, C. Nash, S. B. Alejandro, and G. G. Koenig, “Atlantic atmospheric aerosol studies: 2. compendium of airborne backscatter measurements at 10.6 μm,” J. Geophys. Res. 100, 1043–1065 (1995).
[Crossref]

Amarouche, N.

Ando, T.

H. Inokuchi, H. Tanaka, and T. Ando, “Development of an onboard Doppler lidar for flight safety,” J. Aircr. 46, 1411–1415 (2009).
[Crossref]

Annane, B.

R. Atlas, R. N. Hoffman, Z. Ma, G. D. Emmitt, and S. A. Wood, S. Greco, S. Tucker, L. Bucci, B. Annane, R. M. Hardesty, and S. Murillo, “Observing system simulation experiments (osses) to evaluate the potential impact of an optical autocovariance wind lidar (OAWL) on numerical weather prediction,” J. Atmos. Ocean. Technol. 32, 1593–1613 (2015).
[Crossref]

Aouji, O.

Atlas, R.

R. Atlas, R. N. Hoffman, Z. Ma, G. D. Emmitt, and S. A. Wood, S. Greco, S. Tucker, L. Bucci, B. Annane, R. M. Hardesty, and S. Murillo, “Observing system simulation experiments (osses) to evaluate the potential impact of an optical autocovariance wind lidar (OAWL) on numerical weather prediction,” J. Atmos. Ocean. Technol. 32, 1593–1613 (2015).
[Crossref]

Avila, G.

G. Avila and P. Singh, “Optical fiber scrambling and light pipes for high accuracy radial velocities measurements,” Proc. SPIE 7018, 70184W (2008).
[Crossref]

Babcock, D. D.

Bahlmann, M.

M. H. Rausch, A. Heller, J. Herbst, T. M. Koller, M. Bahlmann, P. S. Schulz, P. Wasserscheid, and A. P. Fröba, “Mutual and thermal diffusivity of binary mixtures of the ionic liquids [BMIM][C(CN)3] and [BMIM][B(CN)4] with dissolved CO2 by dynamic light scattering,” J. Phys. Chem. B 118, 4636–4646 (2014).
[Crossref]

Bai, J.

Banakh, S. I. N.

S. I. N. Banakh and A. Viktor, Coherent Doppler Wind Lidars in a Turbulent Atmosphere (Artech House, 2013).

Banakh, V. A.

Barny, H.

P. Vrancken, M. Wirth, B. Ehret, G. Witschas, H. Veermann, R. Tump, H. Barny, P. Rondeau, A. Dolfi-Bouteyre, and L. Lombard, “Flight tests of the delicate airborne lidar system for remote clear air turbulence detection,” in 27th International Laser Radar Conference, New York, 2015.

Behrendt, A.

A. Behrendt, S. Pal, V. Wulfmeyer, A. Valdebenito, and G. Lammel, “A novel approach for the characterization of transport and optical properties of aerosol particles near sources– i. measurement of particle backscatter coefficient maps with a scanning UV lidar,” Atmos. Environ. 45, 2795–2802 (2011).
[Crossref]

Bilek, M. M. M.

O. Novák, I. S. Falconer, R. Sanginés, M. Lattemann, R. N. Tarrant, D. R. McKenzie, and M. M. M. Bilek, “Fizeau interferometer system for fast high resolution studies of spectral line shapes,” Rev. Sci. Instrum. 82, 023105 (2011).
[Crossref]

Blouzon, F.

Boley, C. D.

G. Tenti, C. D. Boley, and R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

Brown, D. W.

J. M. Vaughan, D. W. Brown, C. Nash, S. B. Alejandro, and G. G. Koenig, “Atlantic atmospheric aerosol studies: 2. compendium of airborne backscatter measurements at 10.6 μm,” J. Geophys. Res. 100, 1043–1065 (1995).
[Crossref]

Bruneau, D.

Bucci, L.

R. Atlas, R. N. Hoffman, Z. Ma, G. D. Emmitt, and S. A. Wood, S. Greco, S. Tucker, L. Bucci, B. Annane, R. M. Hardesty, and S. Murillo, “Observing system simulation experiments (osses) to evaluate the potential impact of an optical autocovariance wind lidar (OAWL) on numerical weather prediction,” J. Atmos. Ocean. Technol. 32, 1593–1613 (2015).
[Crossref]

Buchholtz, G.

Bucholtz, A.

Cézard, N.

Chaloupy, M.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-aeolus. Part I: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
[Crossref]

Chen, Z.

Cheng, Z.

Chinal, E.

Y. Durand, R. Meynart, M. Endemann, E. Chinal, D. Morançais, T. Schröder, and O. Reitebuch, “Manufacturing of an airborne demonstrator of ALADIN: the direct detection Doppler wind lidar for ADM-aeolus,” Proc. SPIE 5984, 598401 (2005).
[Crossref]

Chu, X.

Chudzynski, S.

Collis, R. T. H.

R. T. H. Collis and P. B. Russell, “Lidar measurement of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed., Vol. 14 of Topics in Applied Physics, (Springer, 1976), pp. 71–151.

Cook, A.

Cress, A.

O. Reitebuch, C. Werner, I. Leike, P. Delville, P. H. Flamant, A. Cress, and D. Engelbart, “Experimental validation of wind profiling performed by the airborne 10-μm heterodyne Doppler lidar wind,” J. Atmos. Ocean. Technol. 18, 1331–1344 (2001).
[Crossref]

Dell’Aglio, M.

Delville, P.

O. Reitebuch, C. Werner, I. Leike, P. Delville, P. H. Flamant, A. Cress, and D. Engelbart, “Experimental validation of wind profiling performed by the airborne 10-μm heterodyne Doppler lidar wind,” J. Atmos. Ocean. Technol. 18, 1331–1344 (2001).
[Crossref]

Desai, R. C.

G. Tenti, C. D. Boley, and R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

DeWitt, C.

S. Mahadevan, J. Ge, C. DeWitt, J. C. van Eyken, and G. Friedman, “Design of a stable fixed delay interferometer prototype for the ET project,” Proc. SPIE 5492, 615–623 (2004).

Diehl, H.

N. P. Schmitt, W. Rehm, T. Pistner, P. Zeller, H. Diehl, and P. Nav’e, “The awiator airborne lidar turbulence sensor,” Aerosp. Sci. Technol. 11, 546–552 (2007).
[Crossref]

Dolfi-Bouteyre, A.

N. Cézard, A. Dolfi-Bouteyre, J.-P. Huignard, and P. H. Flamant, “Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355 nm Rayleigh–Mie lidar,” Appl. Opt. 48, 2321–2332 (2009).
[Crossref]

P. Vrancken, M. Wirth, B. Ehret, G. Witschas, H. Veermann, R. Tump, H. Barny, P. Rondeau, A. Dolfi-Bouteyre, and L. Lombard, “Flight tests of the delicate airborne lidar system for remote clear air turbulence detection,” in 27th International Laser Radar Conference, New York, 2015.

Duan, L.

Durand, Y.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-aeolus. Part I: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
[Crossref]

Y. Durand, R. Meynart, M. Endemann, E. Chinal, D. Morançais, T. Schröder, and O. Reitebuch, “Manufacturing of an airborne demonstrator of ALADIN: the direct detection Doppler wind lidar for ADM-aeolus,” Proc. SPIE 5984, 598401 (2005).
[Crossref]

Ehlers, J.

J. Ehlers, D. Fischenberg, and D. Niedermeier, “Wake impact alleviation control based on wake identification,” J. Aircr. 52, 2077–2089 (2015).
[Crossref]

J. Ehlers and N. Fezans, “Airborne Doppler lidar sensor parameter analysis for wake vortex impact alleviation purposes,” in Advances in Aerospace Guidance, Navigation and Control: Selected Papers of the Third CEAS Specialist Conference on Guidance, Navigation and Control held in Toulouse, J. Bordeneuve-Guibé, A. Drouin, and C. Roos, eds. (Springer, 2015), pp. 433–453.

Ehret, B.

P. Vrancken, M. Wirth, B. Ehret, G. Witschas, H. Veermann, R. Tump, H. Barny, P. Rondeau, A. Dolfi-Bouteyre, and L. Lombard, “Flight tests of the delicate airborne lidar system for remote clear air turbulence detection,” in 27th International Laser Radar Conference, New York, 2015.

Ehret, G.

M. C. Hirschberger and G. Ehret, “Simulation and high-precision wavelength determination of noisy 2D Fabry-Perot interferometric rings for direct-detection Doppler lidar and laser spectroscopy,” Appl. Phys. B 103, 207–222 (2011).
[Crossref]

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar wales: system design and performance,” Appl. Phys. B 96, 201–213 (2009).
[Crossref]

Emmitt, G. D.

R. Atlas, R. N. Hoffman, Z. Ma, G. D. Emmitt, and S. A. Wood, S. Greco, S. Tucker, L. Bucci, B. Annane, R. M. Hardesty, and S. Murillo, “Observing system simulation experiments (osses) to evaluate the potential impact of an optical autocovariance wind lidar (OAWL) on numerical weather prediction,” J. Atmos. Ocean. Technol. 32, 1593–1613 (2015).
[Crossref]

Endemann, M.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-aeolus. Part I: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
[Crossref]

Y. Durand, R. Meynart, M. Endemann, E. Chinal, D. Morançais, T. Schröder, and O. Reitebuch, “Manufacturing of an airborne demonstrator of ALADIN: the direct detection Doppler wind lidar for ADM-aeolus,” Proc. SPIE 5984, 598401 (2005).
[Crossref]

Engelbart, D.

O. Reitebuch, C. Werner, I. Leike, P. Delville, P. H. Flamant, A. Cress, and D. Engelbart, “Experimental validation of wind profiling performed by the airborne 10-μm heterodyne Doppler lidar wind,” J. Atmos. Ocean. Technol. 18, 1331–1344 (2001).
[Crossref]

Englert, C.

J. M. Harlander and C. Englert, “Design of a real-fringe DASH interferometer for observations of thermospheric winds from a small satellite,” in Imaging and Applied Optics, OSA Technical Digest (online) (Optical Society of America, 2013), paper FW1D.2.

Englert, C. R.

Evans, J. K.

J. K. Evans, “An updated examination of aviation accidents associated with turbulence, wind shear and thunderstorm,” (Analytical Mechanics Associates, Inc., 2014) http://ntrs.nasa.gov/search.jsp?R=20160005906 .

Fabre, F.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-aeolus. Part I: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
[Crossref]

Falconer, I. S.

O. Novák, I. S. Falconer, R. Sanginés, M. Lattemann, R. N. Tarrant, D. R. McKenzie, and M. M. M. Bilek, “Fizeau interferometer system for fast high resolution studies of spectral line shapes,” Rev. Sci. Instrum. 82, 023105 (2011).
[Crossref]

Fezans, N.

J. Ehlers and N. Fezans, “Airborne Doppler lidar sensor parameter analysis for wake vortex impact alleviation purposes,” in Advances in Aerospace Guidance, Navigation and Control: Selected Papers of the Third CEAS Specialist Conference on Guidance, Navigation and Control held in Toulouse, J. Bordeneuve-Guibé, A. Drouin, and C. Roos, eds. (Springer, 2015), pp. 433–453.

J. Schwithal and N. Fezans, Institut für Flugsystemtechnik (FT), German Aerospace Center (DLR), Lilienthalplatz 7, 38108 Braunschweig, Germany (personal communication, 2016).

N. Fezans, J. Schwithal, and D. Fischenberg, “In-flight remote sensing and characterization of gusts, turbulence, and wake vortices,” in Deutscher Luft- und Raumfahrtkongress, Rostock, Germany, 2015.

Fischenberg, D.

J. Ehlers, D. Fischenberg, and D. Niedermeier, “Wake impact alleviation control based on wake identification,” J. Aircr. 52, 2077–2089 (2015).
[Crossref]

N. Fezans, J. Schwithal, and D. Fischenberg, “In-flight remote sensing and characterization of gusts, turbulence, and wake vortices,” in Deutscher Luft- und Raumfahrtkongress, Rostock, Germany, 2015.

Fix, A.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar wales: system design and performance,” Appl. Phys. B 96, 201–213 (2009).
[Crossref]

Flamant, P. H.

N. Cézard, A. Dolfi-Bouteyre, J.-P. Huignard, and P. H. Flamant, “Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355 nm Rayleigh–Mie lidar,” Appl. Opt. 48, 2321–2332 (2009).
[Crossref]

O. Reitebuch, C. Werner, I. Leike, P. Delville, P. H. Flamant, A. Cress, and D. Engelbart, “Experimental validation of wind profiling performed by the airborne 10-μm heterodyne Doppler lidar wind,” J. Atmos. Ocean. Technol. 18, 1331–1344 (2001).
[Crossref]

Flesia, C.

Forkey, J. N.

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33 (2001).
[Crossref]

Fortunato, G.

G. Fortunato, “L’interféromètre de Michelson, quelques aspects théoriques et expérimentaux,” Bulletin de l’Union des Physiciens 91, 15–56 (1997).

Freudenthaler, V.

S. Groß, V. Freudenthaler, M. Wirth, and B. Weinzierl, “Towards an aerosol classification scheme for future earthcare lidar observations and implications for research needs,” Atmos. Sci. Lett. 16, 77–82 (2015).
[Crossref]

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-aeolus. part ii: Simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26, 2516–2530 (2009).
[Crossref]

Friedman, G.

S. Mahadevan, J. Ge, C. DeWitt, J. C. van Eyken, and G. Friedman, “Design of a stable fixed delay interferometer prototype for the ET project,” Proc. SPIE 5492, 615–623 (2004).

Fröba, A. P.

M. H. Rausch, A. Heller, J. Herbst, T. M. Koller, M. Bahlmann, P. S. Schulz, P. Wasserscheid, and A. P. Fröba, “Mutual and thermal diffusivity of binary mixtures of the ionic liquids [BMIM][C(CN)3] and [BMIM][B(CN)4] with dissolved CO2 by dynamic light scattering,” J. Phys. Chem. B 118, 4636–4646 (2014).
[Crossref]

Furuta, M.

H. Inokuchi, M. Furuta, and T. Inagaki, “High altitude turbulence detection using an airborne Doppler lidar,” in 29th Congress of the International Council of the Aeronautical Sciences (ICAS), St. Petersburg, Russia, 7–12 September2014.

Gagné, J.-M.

Galindez, C.

L. Rodriguez-Cobo, M. Lomer, C. Galindez, and J. M. Lopez-Higuera, “Speckle characterization in multimode fibers for sensing applications,” Proc. SPIE 8413, 84131R (2012).

Gault, W. A.

Ge, J.

X. Wan, J. Ge, and Z. Chen, “Development of stable monolithic wide-field Michelson interferometers,” Appl. Opt. 50, 4105–4114 (2011).
[Crossref]

S. Mahadevan, J. Ge, C. DeWitt, J. C. van Eyken, and G. Friedman, “Design of a stable fixed delay interferometer prototype for the ET project,” Proc. SPIE 5492, 615–623 (2004).

Genau, P.

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).

Greco, S.

R. Atlas, R. N. Hoffman, Z. Ma, G. D. Emmitt, and S. A. Wood, S. Greco, S. Tucker, L. Bucci, B. Annane, R. M. Hardesty, and S. Murillo, “Observing system simulation experiments (osses) to evaluate the potential impact of an optical autocovariance wind lidar (OAWL) on numerical weather prediction,” J. Atmos. Ocean. Technol. 32, 1593–1613 (2015).
[Crossref]

Groß, S.

S. Groß, V. Freudenthaler, M. Wirth, and B. Weinzierl, “Towards an aerosol classification scheme for future earthcare lidar observations and implications for research needs,” Atmos. Sci. Lett. 16, 77–82 (2015).
[Crossref]

Grund, C. J.

C. J. Grund and S. Tucker, “Optical autocovariance wind lidar (OAWL): a new approach to direct-detection Doppler wind profiling,” in Fifth Symposium on Lidar Atmospheric Applications, Seattle, Washington (American Meteorological Society, 2011).

Hair, J.

Hansen, G.

G. Hansen, “Die sichtbarkeit der interferenzen beim Michelson- und Twyman-interferometer,” Zeitschrift für Instrumentenkunde 61, 411 (1941).

Hardesty, R. M.

R. Atlas, R. N. Hoffman, Z. Ma, G. D. Emmitt, and S. A. Wood, S. Greco, S. Tucker, L. Bucci, B. Annane, R. M. Hardesty, and S. Murillo, “Observing system simulation experiments (osses) to evaluate the potential impact of an optical autocovariance wind lidar (OAWL) on numerical weather prediction,” J. Atmos. Ocean. Technol. 32, 1593–1613 (2015).
[Crossref]

Harlander, J. M.

J. M. Harlander, C. R. Englert, D. D. Babcock, and F. L. Roesler, “Design and laboratory tests of a Doppler asymmetric spatial heterodyne (DASH) interferometer for upper atmospheric wind and temperature observations,” Opt. Express 18, 26430–26440 (2010).
[Crossref]

J. M. Harlander and C. Englert, “Design of a real-fringe DASH interferometer for observations of thermospheric winds from a small satellite,” in Imaging and Applied Optics, OSA Technical Digest (online) (Optical Society of America, 2013), paper FW1D.2.

Haslett, J. W.

Hays, P. B.

Heel, T.

F. Holzäpfel, A. Stephan, T. Heel, and S. Körner, “Enhanced wake vortex decay in ground proximity triggered by plate lines,” Aircr. Eng. 88, 206–214 (2016).
[Crossref]

Heller, A.

M. H. Rausch, A. Heller, J. Herbst, T. M. Koller, M. Bahlmann, P. S. Schulz, P. Wasserscheid, and A. P. Fröba, “Mutual and thermal diffusivity of binary mixtures of the ionic liquids [BMIM][C(CN)3] and [BMIM][B(CN)4] with dissolved CO2 by dynamic light scattering,” J. Phys. Chem. B 118, 4636–4646 (2014).
[Crossref]

Herbst, J.

M. H. Rausch, A. Heller, J. Herbst, T. M. Koller, M. Bahlmann, P. S. Schulz, P. Wasserscheid, and A. P. Fröba, “Mutual and thermal diffusivity of binary mixtures of the ionic liquids [BMIM][C(CN)3] and [BMIM][B(CN)4] with dissolved CO2 by dynamic light scattering,” J. Phys. Chem. B 118, 4636–4646 (2014).
[Crossref]

Hilliard, R. L.

Hirschberger, M. C.

M. C. Hirschberger and G. Ehret, “Simulation and high-precision wavelength determination of noisy 2D Fabry-Perot interferometric rings for direct-detection Doppler lidar and laser spectroscopy,” Appl. Phys. B 103, 207–222 (2011).
[Crossref]

Hoffman, R. N.

R. Atlas, R. N. Hoffman, Z. Ma, G. D. Emmitt, and S. A. Wood, S. Greco, S. Tucker, L. Bucci, B. Annane, R. M. Hardesty, and S. Murillo, “Observing system simulation experiments (osses) to evaluate the potential impact of an optical autocovariance wind lidar (OAWL) on numerical weather prediction,” J. Atmos. Ocean. Technol. 32, 1593–1613 (2015).
[Crossref]

Holzäpfel, F.

Hostetler, C.

Huignard, J.-P.

Inagaki, T.

H. Inokuchi, M. Furuta, and T. Inagaki, “High altitude turbulence detection using an airborne Doppler lidar,” in 29th Congress of the International Council of the Aeronautical Sciences (ICAS), St. Petersburg, Russia, 7–12 September2014.

Inokuchi, H.

H. Inokuchi, H. Tanaka, and T. Ando, “Development of an onboard Doppler lidar for flight safety,” J. Aircr. 46, 1411–1415 (2009).
[Crossref]

H. Inokuchi, M. Furuta, and T. Inagaki, “High altitude turbulence detection using an airborne Doppler lidar,” in 29th Congress of the International Council of the Aeronautical Sciences (ICAS), St. Petersburg, Russia, 7–12 September2014.

Johnston, S. F.

Kendall, D. J. W.

Kier, T.

G. Looye, T. Lombaerts, and T. Kier, “Design and flight testing of feedback control laws,” (The DLR Project Wetter & Fliegen, German Aerospace Center, 2012), pp. 162–170.

Kobayashi, T.

Z. Liu and T. Kobayashi, “Differential discrimination technique for incoherent Doppler lidar to measure atmospheric wind and backscatter ratio,” Opt. Rev. 3, 47–52 (1996).
[Crossref]

Koenig, G. G.

J. M. Vaughan, D. W. Brown, C. Nash, S. B. Alejandro, and G. G. Koenig, “Atlantic atmospheric aerosol studies: 2. compendium of airborne backscatter measurements at 10.6 μm,” J. Geophys. Res. 100, 1043–1065 (1995).
[Crossref]

Koller, T. M.

M. H. Rausch, A. Heller, J. Herbst, T. M. Koller, M. Bahlmann, P. S. Schulz, P. Wasserscheid, and A. P. Fröba, “Mutual and thermal diffusivity of binary mixtures of the ionic liquids [BMIM][C(CN)3] and [BMIM][B(CN)4] with dissolved CO2 by dynamic light scattering,” J. Phys. Chem. B 118, 4636–4646 (2014).
[Crossref]

Köpp, F.

F. Köpp, S. Rahm, and I. Smalikho, “Characterization of aircraft wake vortices by 2-μm pulsed Doppler lidar,” J. Atmos. Ocean. Technol. 21, 194–206 (2004).
[Crossref]

Korb, C. L.

Körner, S.

F. Holzäpfel, A. Stephan, T. Heel, and S. Körner, “Enhanced wake vortex decay in ground proximity triggered by plate lines,” Aircr. Eng. 88, 206–214 (2016).
[Crossref]

Kosteniuk, P. R.

Lammel, G.

A. Behrendt, S. Pal, V. Wulfmeyer, A. Valdebenito, and G. Lammel, “A novel approach for the characterization of transport and optical properties of aerosol particles near sources– i. measurement of particle backscatter coefficient maps with a scanning UV lidar,” Atmos. Environ. 45, 2795–2802 (2011).
[Crossref]

Lattemann, M.

O. Novák, I. S. Falconer, R. Sanginés, M. Lattemann, R. N. Tarrant, D. R. McKenzie, and M. M. M. Bilek, “Fizeau interferometer system for fast high resolution studies of spectral line shapes,” Rev. Sci. Instrum. 82, 023105 (2011).
[Crossref]

Leike, I.

O. Reitebuch, C. Werner, I. Leike, P. Delville, P. H. Flamant, A. Cress, and D. Engelbart, “Experimental validation of wind profiling performed by the airborne 10-μm heterodyne Doppler lidar wind,” J. Atmos. Ocean. Technol. 18, 1331–1344 (2001).
[Crossref]

Lemmerz, C.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-aeolus. Part I: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
[Crossref]

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-aeolus. part ii: Simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26, 2516–2530 (2009).
[Crossref]

Lempert, W. R.

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33 (2001).
[Crossref]

Liu, D.

Liu, Z.

Z. Liu and T. Kobayashi, “Differential discrimination technique for incoherent Doppler lidar to measure atmospheric wind and backscatter ratio,” Opt. Rev. 3, 47–52 (1996).
[Crossref]

Lombaerts, T.

G. Looye, T. Lombaerts, and T. Kier, “Design and flight testing of feedback control laws,” (The DLR Project Wetter & Fliegen, German Aerospace Center, 2012), pp. 162–170.

Lombard, L.

P. Vrancken, M. Wirth, B. Ehret, G. Witschas, H. Veermann, R. Tump, H. Barny, P. Rondeau, A. Dolfi-Bouteyre, and L. Lombard, “Flight tests of the delicate airborne lidar system for remote clear air turbulence detection,” in 27th International Laser Radar Conference, New York, 2015.

Lomer, M.

L. Rodriguez-Cobo, M. Lomer, C. Galindez, and J. M. Lopez-Higuera, “Speckle characterization in multimode fibers for sensing applications,” Proc. SPIE 8413, 84131R (2012).

Looye, G.

G. Looye, T. Lombaerts, and T. Kier, “Design and flight testing of feedback control laws,” (The DLR Project Wetter & Fliegen, German Aerospace Center, 2012), pp. 162–170.

Lopez-Higuera, J. M.

L. Rodriguez-Cobo, M. Lomer, C. Galindez, and J. M. Lopez-Higuera, “Speckle characterization in multimode fibers for sensing applications,” Proc. SPIE 8413, 84131R (2012).

Luo, J.

Ma, Z.

R. Atlas, R. N. Hoffman, Z. Ma, G. D. Emmitt, and S. A. Wood, S. Greco, S. Tucker, L. Bucci, B. Annane, R. M. Hardesty, and S. Murillo, “Observing system simulation experiments (osses) to evaluate the potential impact of an optical autocovariance wind lidar (OAWL) on numerical weather prediction,” J. Atmos. Ocean. Technol. 32, 1593–1613 (2015).
[Crossref]

Mahadevan, S.

S. Mahadevan, J. Ge, C. DeWitt, J. C. van Eyken, and G. Friedman, “Design of a stable fixed delay interferometer prototype for the ET project,” Proc. SPIE 5492, 615–623 (2004).

Mahnke, P.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar wales: system design and performance,” Appl. Phys. B 96, 201–213 (2009).
[Crossref]

McCally, R. L.

R. L. McCally, “Laser eye safety research at apl,” Johns Hopkins APL Tech. Dig. 26, 46–55 (2005).

McGill, M. J.

M. J. McGill and J. D. Spinhirne, “Comparison of two direct-detection Doppler lidar techniques,” Opt. Eng. 37, 2675–2686 (1998).
[Crossref]

McKay, J. A.

McKenzie, D. R.

O. Novák, I. S. Falconer, R. Sanginés, M. Lattemann, R. N. Tarrant, D. R. McKenzie, and M. M. M. Bilek, “Fizeau interferometer system for fast high resolution studies of spectral line shapes,” Rev. Sci. Instrum. 82, 023105 (2011).
[Crossref]

Mead, R.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
[Crossref]

Measures, R. M.

R. M. Measures, Laser Remote Sensing (Wiley, 1992).

Meynart, R.

Y. Durand, R. Meynart, M. Endemann, E. Chinal, D. Morançais, T. Schröder, and O. Reitebuch, “Manufacturing of an airborne demonstrator of ALADIN: the direct detection Doppler wind lidar for ADM-aeolus,” Proc. SPIE 5984, 598401 (2005).
[Crossref]

Miles, R. B.

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33 (2001).
[Crossref]

Miller, D. W.

Miller, I.

Mishchenko, M. I.

M. I. Mishchenko, “Directional radiometry and radiative transfer: The convoluted path from centuries-old phenomenology to physical optics,” J. Quant. Spectrosc. Radiat. Transfer 146, 4–33 (2014).
[Crossref]

Moorhouse, D. J.

D. J. Moorhouse and R. J. Woodcock, “Background information and user guide for MIL-F-8785C, military specification-flying qualities of piloted airplanes,” (Air Force Wright Aeronautical Labs Wright-Patterson Air Force Base, 1982)..

Morançais, D.

Y. Durand, R. Meynart, M. Endemann, E. Chinal, D. Morançais, T. Schröder, and O. Reitebuch, “Manufacturing of an airborne demonstrator of ALADIN: the direct detection Doppler wind lidar for ADM-aeolus,” Proc. SPIE 5984, 598401 (2005).
[Crossref]

Murillo, S.

R. Atlas, R. N. Hoffman, Z. Ma, G. D. Emmitt, and S. A. Wood, S. Greco, S. Tucker, L. Bucci, B. Annane, R. M. Hardesty, and S. Murillo, “Observing system simulation experiments (osses) to evaluate the potential impact of an optical autocovariance wind lidar (OAWL) on numerical weather prediction,” J. Atmos. Ocean. Technol. 32, 1593–1613 (2015).
[Crossref]

Nagel, E.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-aeolus. Part I: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
[Crossref]

Nash, C.

J. M. Vaughan, D. W. Brown, C. Nash, S. B. Alejandro, and G. G. Koenig, “Atlantic atmospheric aerosol studies: 2. compendium of airborne backscatter measurements at 10.6 μm,” J. Geophys. Res. 100, 1043–1065 (1995).
[Crossref]

Nav’e, P.

N. P. Schmitt, W. Rehm, T. Pistner, P. Zeller, H. Diehl, and P. Nav’e, “The awiator airborne lidar turbulence sensor,” Aerosp. Sci. Technol. 11, 546–552 (2007).
[Crossref]

Nelder, J. A.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
[Crossref]

Niedermeier, D.

J. Ehlers, D. Fischenberg, and D. Niedermeier, “Wake impact alleviation control based on wake identification,” J. Aircr. 52, 2077–2089 (2015).
[Crossref]

Nikolaus, I.

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-aeolus. part ii: Simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26, 2516–2530 (2009).
[Crossref]

Novák, O.

O. Novák, I. S. Falconer, R. Sanginés, M. Lattemann, R. N. Tarrant, D. R. McKenzie, and M. M. M. Bilek, “Fizeau interferometer system for fast high resolution studies of spectral line shapes,” Rev. Sci. Instrum. 82, 023105 (2011).
[Crossref]

Paffrath, U.

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-aeolus. part ii: Simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26, 2516–2530 (2009).
[Crossref]

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-aeolus. Part I: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
[Crossref]

U. Paffrath, “Performance assessment of the Aeolus Doppler wind lidar prototype,” Dissertation DLR-FB–2006-2012 (DLR-Forschungsbericht, 2006).

Pal, S.

A. Behrendt, S. Pal, V. Wulfmeyer, A. Valdebenito, and G. Lammel, “A novel approach for the characterization of transport and optical properties of aerosol particles near sources– i. measurement of particle backscatter coefficient maps with a scanning UV lidar,” Atmos. Environ. 45, 2795–2802 (2011).
[Crossref]

Pasturczyk, Z.

Pelon, J.

Picard, M.

Pistner, T.

G. J. Rabadan, N. P. Schmitt, T. Pistner, and W. Rehm, “Airborne lidar for automatic feedforward control of turbulent in-flight phenomena,” J. Aircr. 47, 392–403 (2010).
[Crossref]

N. P. Schmitt, W. Rehm, T. Pistner, P. Zeller, H. Diehl, and P. Nav’e, “The awiator airborne lidar turbulence sensor,” Aerosp. Sci. Technol. 11, 546–552 (2007).
[Crossref]

Rabadan, G. J.

G. J. Rabadan, N. P. Schmitt, T. Pistner, and W. Rehm, “Airborne lidar for automatic feedforward control of turbulent in-flight phenomena,” J. Aircr. 47, 392–403 (2010).
[Crossref]

Rahm, S.

Ramsey, H. E.

Rausch, M. H.

M. H. Rausch, A. Heller, J. Herbst, T. M. Koller, M. Bahlmann, P. S. Schulz, P. Wasserscheid, and A. P. Fröba, “Mutual and thermal diffusivity of binary mixtures of the ionic liquids [BMIM][C(CN)3] and [BMIM][B(CN)4] with dissolved CO2 by dynamic light scattering,” J. Phys. Chem. B 118, 4636–4646 (2014).
[Crossref]

Rehm, W.

G. J. Rabadan, N. P. Schmitt, T. Pistner, and W. Rehm, “Airborne lidar for automatic feedforward control of turbulent in-flight phenomena,” J. Aircr. 47, 392–403 (2010).
[Crossref]

N. P. Schmitt, W. Rehm, T. Pistner, P. Zeller, H. Diehl, and P. Nav’e, “The awiator airborne lidar turbulence sensor,” Aerosp. Sci. Technol. 11, 546–552 (2007).
[Crossref]

Reitebuch, O.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-aeolus. Part I: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
[Crossref]

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-aeolus. part ii: Simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26, 2516–2530 (2009).
[Crossref]

Y. Durand, R. Meynart, M. Endemann, E. Chinal, D. Morançais, T. Schröder, and O. Reitebuch, “Manufacturing of an airborne demonstrator of ALADIN: the direct detection Doppler wind lidar for ADM-aeolus,” Proc. SPIE 5984, 598401 (2005).
[Crossref]

O. Reitebuch, C. Werner, I. Leike, P. Delville, P. H. Flamant, A. Cress, and D. Engelbart, “Experimental validation of wind profiling performed by the airborne 10-μm heterodyne Doppler lidar wind,” J. Atmos. Ocean. Technol. 18, 1331–1344 (2001).
[Crossref]

O. Reitebuch, Institut für Physik der Atmosphäre (IPA), German Aerospace Center (DLR), Oberpfaffenhofen, Münchner Str. 20, 82234 Wessling, Germany (personal communication, 2016).

Rodriguez-Cobo, L.

L. Rodriguez-Cobo, M. Lomer, C. Galindez, and J. M. Lopez-Higuera, “Speckle characterization in multimode fibers for sensing applications,” Proc. SPIE 8413, 84131R (2012).

Roesler, F. L.

Rondeau, P.

P. Vrancken, M. Wirth, B. Ehret, G. Witschas, H. Veermann, R. Tump, H. Barny, P. Rondeau, A. Dolfi-Bouteyre, and L. Lombard, “Flight tests of the delicate airborne lidar system for remote clear air turbulence detection,” in 27th International Laser Radar Conference, New York, 2015.

Russell, P. B.

R. T. H. Collis and P. B. Russell, “Lidar measurement of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed., Vol. 14 of Topics in Applied Physics, (Springer, 1976), pp. 71–151.

Saint-Dizier, J.-P.

Sanginés, R.

O. Novák, I. S. Falconer, R. Sanginés, M. Lattemann, R. N. Tarrant, D. R. McKenzie, and M. M. M. Bilek, “Fizeau interferometer system for fast high resolution studies of spectral line shapes,” Rev. Sci. Instrum. 82, 023105 (2011).
[Crossref]

Schmitt, N. P.

G. J. Rabadan, N. P. Schmitt, T. Pistner, and W. Rehm, “Airborne lidar for automatic feedforward control of turbulent in-flight phenomena,” J. Aircr. 47, 392–403 (2010).
[Crossref]

N. P. Schmitt, W. Rehm, T. Pistner, P. Zeller, H. Diehl, and P. Nav’e, “The awiator airborne lidar turbulence sensor,” Aerosp. Sci. Technol. 11, 546–552 (2007).
[Crossref]

Schrandt, F.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar wales: system design and performance,” Appl. Phys. B 96, 201–213 (2009).
[Crossref]

Schröder, T.

Y. Durand, R. Meynart, M. Endemann, E. Chinal, D. Morançais, T. Schröder, and O. Reitebuch, “Manufacturing of an airborne demonstrator of ALADIN: the direct detection Doppler wind lidar for ADM-aeolus,” Proc. SPIE 5984, 598401 (2005).
[Crossref]

Schulz, P. S.

M. H. Rausch, A. Heller, J. Herbst, T. M. Koller, M. Bahlmann, P. S. Schulz, P. Wasserscheid, and A. P. Fröba, “Mutual and thermal diffusivity of binary mixtures of the ionic liquids [BMIM][C(CN)3] and [BMIM][B(CN)4] with dissolved CO2 by dynamic light scattering,” J. Phys. Chem. B 118, 4636–4646 (2014).
[Crossref]

Schwarzer, H.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar wales: system design and performance,” Appl. Phys. B 96, 201–213 (2009).
[Crossref]

Schwithal, J.

N. Fezans, J. Schwithal, and D. Fischenberg, “In-flight remote sensing and characterization of gusts, turbulence, and wake vortices,” in Deutscher Luft- und Raumfahrtkongress, Rostock, Germany, 2015.

J. Schwithal and N. Fezans, Institut für Flugsystemtechnik (FT), German Aerospace Center (DLR), Lilienthalplatz 7, 38108 Braunschweig, Germany (personal communication, 2016).

Shen, Y.

Shepherd, G. G.

Singh, P.

G. Avila and P. Singh, “Optical fiber scrambling and light pipes for high accuracy radial velocities measurements,” Proc. SPIE 7018, 70184W (2008).
[Crossref]

Smalikho, I.

F. Köpp, S. Rahm, and I. Smalikho, “Characterization of aircraft wake vortices by 2-μm pulsed Doppler lidar,” J. Atmos. Ocean. Technol. 21, 194–206 (2004).
[Crossref]

Smalikho, I. N.

Smith, J. A.

Spatazza, J.

Spinhirne, J. D.

M. J. McGill and J. D. Spinhirne, “Comparison of two direct-detection Doppler lidar techniques,” Opt. Eng. 37, 2675–2686 (1998).
[Crossref]

Stacewicz, T.

Stelmaszczyk, K.

Stephan, A.

F. Holzäpfel, A. Stephan, T. Heel, and S. Körner, “Enhanced wake vortex decay in ground proximity triggered by plate lines,” Aircr. Eng. 88, 206–214 (2016).
[Crossref]

Su, L.

Tanaka, H.

H. Inokuchi, H. Tanaka, and T. Ando, “Development of an onboard Doppler lidar for flight safety,” J. Aircr. 46, 1411–1415 (2009).
[Crossref]

Tarrant, R. N.

O. Novák, I. S. Falconer, R. Sanginés, M. Lattemann, R. N. Tarrant, D. R. McKenzie, and M. M. M. Bilek, “Fizeau interferometer system for fast high resolution studies of spectral line shapes,” Rev. Sci. Instrum. 82, 023105 (2011).
[Crossref]

Tenti, G.

G. Tenti, C. D. Boley, and R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

Title, A. M.

A. M. Title and H. E. Ramsey, “Improvements in birefringent filters. 6: analog birefringent elements,” Appl. Opt. 19, 2046–2058 (1980).
[Crossref]

A. M. Title, “Imaging Michelson interferometers,” in Observing Photons in Space: A Guide to Experimental Space Astronomy, M. C. E. Huber, A. Pauluhn, J. L. Culhane, J. G. Timothy, K. Wilhelm, and A. Zehnder, eds. (Springer, 2013), pp. 349–361.

Tucker, S.

R. Atlas, R. N. Hoffman, Z. Ma, G. D. Emmitt, and S. A. Wood, S. Greco, S. Tucker, L. Bucci, B. Annane, R. M. Hardesty, and S. Murillo, “Observing system simulation experiments (osses) to evaluate the potential impact of an optical autocovariance wind lidar (OAWL) on numerical weather prediction,” J. Atmos. Ocean. Technol. 32, 1593–1613 (2015).
[Crossref]

C. J. Grund and S. Tucker, “Optical autocovariance wind lidar (OAWL): a new approach to direct-detection Doppler wind profiling,” in Fifth Symposium on Lidar Atmospheric Applications, Seattle, Washington (American Meteorological Society, 2011).

Tump, R.

P. Vrancken, M. Wirth, B. Ehret, G. Witschas, H. Veermann, R. Tump, H. Barny, P. Rondeau, A. Dolfi-Bouteyre, and L. Lombard, “Flight tests of the delicate airborne lidar system for remote clear air turbulence detection,” in 27th International Laser Radar Conference, New York, 2015.

Tvaryanas, A. P.

A. P. Tvaryanas, “Epidemiology of turbulence-related injuries in airline cabin crew,” Aviat. Space Environ. Med. 74, 970–976 (2003).

Valdebenito, A.

A. Behrendt, S. Pal, V. Wulfmeyer, A. Valdebenito, and G. Lammel, “A novel approach for the characterization of transport and optical properties of aerosol particles near sources– i. measurement of particle backscatter coefficient maps with a scanning UV lidar,” Atmos. Environ. 45, 2795–2802 (2011).
[Crossref]

van Eyken, J. C.

S. Mahadevan, J. Ge, C. DeWitt, J. C. van Eyken, and G. Friedman, “Design of a stable fixed delay interferometer prototype for the ET project,” Proc. SPIE 5492, 615–623 (2004).

Vaughan, J. M.

J. M. Vaughan, D. W. Brown, C. Nash, S. B. Alejandro, and G. G. Koenig, “Atlantic atmospheric aerosol studies: 2. compendium of airborne backscatter measurements at 10.6 μm,” J. Geophys. Res. 100, 1043–1065 (1995).
[Crossref]

Veermann, H.

P. Vrancken, M. Wirth, B. Ehret, G. Witschas, H. Veermann, R. Tump, H. Barny, P. Rondeau, A. Dolfi-Bouteyre, and L. Lombard, “Flight tests of the delicate airborne lidar system for remote clear air turbulence detection,” in 27th International Laser Radar Conference, New York, 2015.

Viktor, A.

S. I. N. Banakh and A. Viktor, Coherent Doppler Wind Lidars in a Turbulent Atmosphere (Artech House, 2013).

Vrancken, P.

P. Vrancken, M. Wirth, B. Ehret, G. Witschas, H. Veermann, R. Tump, H. Barny, P. Rondeau, A. Dolfi-Bouteyre, and L. Lombard, “Flight tests of the delicate airborne lidar system for remote clear air turbulence detection,” in 27th International Laser Radar Conference, New York, 2015.

Wan, X.

Wang, J.

Wang, K.

Wasserscheid, P.

M. H. Rausch, A. Heller, J. Herbst, T. M. Koller, M. Bahlmann, P. S. Schulz, P. Wasserscheid, and A. P. Fröba, “Mutual and thermal diffusivity of binary mixtures of the ionic liquids [BMIM][C(CN)3] and [BMIM][B(CN)4] with dissolved CO2 by dynamic light scattering,” J. Phys. Chem. B 118, 4636–4646 (2014).
[Crossref]

Weinzierl, B.

S. Groß, V. Freudenthaler, M. Wirth, and B. Weinzierl, “Towards an aerosol classification scheme for future earthcare lidar observations and implications for research needs,” Atmos. Sci. Lett. 16, 77–82 (2015).
[Crossref]

Werner, C.

O. Reitebuch, C. Werner, I. Leike, P. Delville, P. H. Flamant, A. Cress, and D. Engelbart, “Experimental validation of wind profiling performed by the airborne 10-μm heterodyne Doppler lidar wind,” J. Atmos. Ocean. Technol. 18, 1331–1344 (2001).
[Crossref]

V. A. Banakh, I. N. Smalikho, and C. Werner, “Effect of aerosol particle microstructure on cw Doppler lidar signal statistics,” Appl. Opt. 39, 5393–5402 (2000).
[Crossref]

Wimperis, J. R.

Wirth, M.

S. Groß, V. Freudenthaler, M. Wirth, and B. Weinzierl, “Towards an aerosol classification scheme for future earthcare lidar observations and implications for research needs,” Atmos. Sci. Lett. 16, 77–82 (2015).
[Crossref]

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar wales: system design and performance,” Appl. Phys. B 96, 201–213 (2009).
[Crossref]

P. Vrancken, M. Wirth, B. Ehret, G. Witschas, H. Veermann, R. Tump, H. Barny, P. Rondeau, A. Dolfi-Bouteyre, and L. Lombard, “Flight tests of the delicate airborne lidar system for remote clear air turbulence detection,” in 27th International Laser Radar Conference, New York, 2015.

Witschas, B.

B. Witschas, “Analytical model for Rayleigh-Brillouin line shapes in air,” Appl. Opt. 50, 267–270 (2011).
[Crossref]

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-aeolus. part ii: Simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26, 2516–2530 (2009).
[Crossref]

B. Witschas, “Light scattering on molecules in the atmosphere,” in Atmospheric Physics: Background–Methods–Trends, U. Schumann, ed. (Springer, 2012), pp. 69–83.

Witschas, G.

P. Vrancken, M. Wirth, B. Ehret, G. Witschas, H. Veermann, R. Tump, H. Barny, P. Rondeau, A. Dolfi-Bouteyre, and L. Lombard, “Flight tests of the delicate airborne lidar system for remote clear air turbulence detection,” in 27th International Laser Radar Conference, New York, 2015.

Wood, S. A.

R. Atlas, R. N. Hoffman, Z. Ma, G. D. Emmitt, and S. A. Wood, S. Greco, S. Tucker, L. Bucci, B. Annane, R. M. Hardesty, and S. Murillo, “Observing system simulation experiments (osses) to evaluate the potential impact of an optical autocovariance wind lidar (OAWL) on numerical weather prediction,” J. Atmos. Ocean. Technol. 32, 1593–1613 (2015).
[Crossref]

Woodcock, R. J.

D. J. Moorhouse and R. J. Woodcock, “Background information and user guide for MIL-F-8785C, military specification-flying qualities of piloted airplanes,” (Air Force Wright Aeronautical Labs Wright-Patterson Air Force Base, 1982)..

Wöste, L.

Wriedt, T.

T. Wriedt, “Mie theory: a review,” in The Mie Theory: Basics and Applications, W. Hergert and T. Wriedt, eds. (Springer, 2012), pp. 53–71.

Wu, J.

Wulfmeyer, V.

A. Behrendt, S. Pal, V. Wulfmeyer, A. Valdebenito, and G. Lammel, “A novel approach for the characterization of transport and optical properties of aerosol particles near sources– i. measurement of particle backscatter coefficient maps with a scanning UV lidar,” Atmos. Environ. 45, 2795–2802 (2011).
[Crossref]

Yang, L.

Yang, Y.

Zeller, P.

N. P. Schmitt, W. Rehm, T. Pistner, P. Zeller, H. Diehl, and P. Nav’e, “The awiator airborne lidar turbulence sensor,” Aerosp. Sci. Technol. 11, 546–552 (2007).
[Crossref]

Zhang, Y.

Zhou, Y.

Aerosp. Sci. Technol. (1)

N. P. Schmitt, W. Rehm, T. Pistner, P. Zeller, H. Diehl, and P. Nav’e, “The awiator airborne lidar turbulence sensor,” Aerosp. Sci. Technol. 11, 546–552 (2007).
[Crossref]

Aircr. Eng. (1)

F. Holzäpfel, A. Stephan, T. Heel, and S. Körner, “Enhanced wake vortex decay in ground proximity triggered by plate lines,” Aircr. Eng. 88, 206–214 (2016).
[Crossref]

Appl. Opt. (19)

V. A. Banakh, I. N. Smalikho, and C. Werner, “Effect of aerosol particle microstructure on cw Doppler lidar signal statistics,” Appl. Opt. 39, 5393–5402 (2000).
[Crossref]

J. A. McKay, “Assessment of a multibeam fizeau wedge interferometer for Doppler wind lidar,” Appl. Opt. 41, 1760–1767 (2002).
[Crossref]

C. Flesia and C. L. Korb, “Theory of the double-edge molecular technique for Doppler lidar wind measurement,” Appl. Opt. 38, 432–440 (1999).
[Crossref]

D. Bruneau, “Mach-Zehnder interferometer as a spectral analyzer for molecular Doppler wind lidar,” Appl. Opt. 40, 391–399 (2001).
[Crossref]

D. Bruneau, “Fringe-imaging Mach-Zehnder interferometer as a spectral analyzer for molecular Doppler wind lidar,” Appl. Opt. 41, 503–510 (2002).
[Crossref]

D. Bruneau and J. Pelon, “Simultaneous measurements of particle backscattering and extinction coefficients and wind velocity by lidar with a Mach-Zehnder interferometer: principle of operation and performance assessment,” Appl. Opt. 42, 1101–1114 (2003).
[Crossref]

J. A. Smith and X. Chu, “Investigation of a field-widened Mach-Zehnder receiver to extend Fe Doppler lidar wind measurements from the thermosphere to the ground,” Appl. Opt. 55, 1366–1380 (2016).
[Crossref]

N. Cézard, A. Dolfi-Bouteyre, J.-P. Huignard, and P. H. Flamant, “Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355 nm Rayleigh–Mie lidar,” Appl. Opt. 48, 2321–2332 (2009).
[Crossref]

G. G. Shepherd, W. A. Gault, D. W. Miller, Z. Pasturczyk, S. F. Johnston, P. R. Kosteniuk, J. W. Haslett, D. J. W. Kendall, and J. R. Wimperis, “Wamdii: wide-angle Michelson Doppler imaging interferometer for spacelab,” Appl. Opt. 24, 1571–1584 (1985).
[Crossref]

D. Bruneau, J. Pelon, F. Blouzon, J. Spatazza, P. Genau, G. Buchholtz, N. Amarouche, A. Abchiche, and O. Aouji, “355-nm high spectral resolution airborne lidar LNG: system description and first results,” Appl. Opt. 54, 8776 (2015).
[Crossref]

A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
[Crossref]

B. Witschas, “Analytical model for Rayleigh-Brillouin line shapes in air,” Appl. Opt. 50, 267–270 (2011).
[Crossref]

J. A. McKay, “Modeling of direct detection Doppler wind lidar. ii. the fringe imaging technique,” Appl. Opt. 37, 6487–6493 (1998).
[Crossref]

J. Wu, J. Wang, and P. B. Hays, “Performance of a circle-to-line optical system for a Fabry-Perot interferometer: a laboratory study,” Appl. Opt. 33, 7823–7828 (1994).
[Crossref]

J. A. McKay, “Modeling of direct detection Doppler wind lidar. i. the edge technique,” Appl. Opt. 37, 6480–6486 (1998).
[Crossref]

K. Stelmaszczyk, M. Dell’Aglio, S. Chudzyński, T. Stacewicz, and L. Wöste, “Analytical function for lidar geometrical compression form-factor calculations,” Appl. Opt. 44, 1323–1331 (2005).
[Crossref]

A. M. Title and H. E. Ramsey, “Improvements in birefringent filters. 6: analog birefringent elements,” Appl. Opt. 19, 2046–2058 (1980).
[Crossref]

X. Wan, J. Ge, and Z. Chen, “Development of stable monolithic wide-field Michelson interferometers,” Appl. Opt. 50, 4105–4114 (2011).
[Crossref]

J.-M. Gagné, J.-P. Saint-Dizier, and M. Picard, “Méthode d’echantillonnage des fonctions déterministes en spectroscopie: application à un spectromètre multicanal par comptage photonique,” Appl. Opt. 13, 581–588 (1974).
[Crossref]

Appl. Phys. B (2)

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar wales: system design and performance,” Appl. Phys. B 96, 201–213 (2009).
[Crossref]

M. C. Hirschberger and G. Ehret, “Simulation and high-precision wavelength determination of noisy 2D Fabry-Perot interferometric rings for direct-detection Doppler lidar and laser spectroscopy,” Appl. Phys. B 103, 207–222 (2011).
[Crossref]

Atmos. Environ. (1)

A. Behrendt, S. Pal, V. Wulfmeyer, A. Valdebenito, and G. Lammel, “A novel approach for the characterization of transport and optical properties of aerosol particles near sources– i. measurement of particle backscatter coefficient maps with a scanning UV lidar,” Atmos. Environ. 45, 2795–2802 (2011).
[Crossref]

Atmos. Sci. Lett. (1)

S. Groß, V. Freudenthaler, M. Wirth, and B. Weinzierl, “Towards an aerosol classification scheme for future earthcare lidar observations and implications for research needs,” Atmos. Sci. Lett. 16, 77–82 (2015).
[Crossref]

Aviat. Space Environ. Med. (1)

A. P. Tvaryanas, “Epidemiology of turbulence-related injuries in airline cabin crew,” Aviat. Space Environ. Med. 74, 970–976 (2003).

Bulletin de l’Union des Physiciens (1)

G. Fortunato, “L’interféromètre de Michelson, quelques aspects théoriques et expérimentaux,” Bulletin de l’Union des Physiciens 91, 15–56 (1997).

Can. J. Phys. (1)

G. Tenti, C. D. Boley, and R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

Comput. J. (1)

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
[Crossref]

J. Aircr. (3)

J. Ehlers, D. Fischenberg, and D. Niedermeier, “Wake impact alleviation control based on wake identification,” J. Aircr. 52, 2077–2089 (2015).
[Crossref]

H. Inokuchi, H. Tanaka, and T. Ando, “Development of an onboard Doppler lidar for flight safety,” J. Aircr. 46, 1411–1415 (2009).
[Crossref]

G. J. Rabadan, N. P. Schmitt, T. Pistner, and W. Rehm, “Airborne lidar for automatic feedforward control of turbulent in-flight phenomena,” J. Aircr. 47, 392–403 (2010).
[Crossref]

J. Atmos. Ocean. Technol. (5)

R. Atlas, R. N. Hoffman, Z. Ma, G. D. Emmitt, and S. A. Wood, S. Greco, S. Tucker, L. Bucci, B. Annane, R. M. Hardesty, and S. Murillo, “Observing system simulation experiments (osses) to evaluate the potential impact of an optical autocovariance wind lidar (OAWL) on numerical weather prediction,” J. Atmos. Ocean. Technol. 32, 1593–1613 (2015).
[Crossref]

O. Reitebuch, C. Werner, I. Leike, P. Delville, P. H. Flamant, A. Cress, and D. Engelbart, “Experimental validation of wind profiling performed by the airborne 10-μm heterodyne Doppler lidar wind,” J. Atmos. Ocean. Technol. 18, 1331–1344 (2001).
[Crossref]

F. Köpp, S. Rahm, and I. Smalikho, “Characterization of aircraft wake vortices by 2-μm pulsed Doppler lidar,” J. Atmos. Ocean. Technol. 21, 194–206 (2004).
[Crossref]

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-aeolus. Part I: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
[Crossref]

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-aeolus. part ii: Simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26, 2516–2530 (2009).
[Crossref]

J. Geophys. Res. (1)

J. M. Vaughan, D. W. Brown, C. Nash, S. B. Alejandro, and G. G. Koenig, “Atlantic atmospheric aerosol studies: 2. compendium of airborne backscatter measurements at 10.6 μm,” J. Geophys. Res. 100, 1043–1065 (1995).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. B (1)

M. H. Rausch, A. Heller, J. Herbst, T. M. Koller, M. Bahlmann, P. S. Schulz, P. Wasserscheid, and A. P. Fröba, “Mutual and thermal diffusivity of binary mixtures of the ionic liquids [BMIM][C(CN)3] and [BMIM][B(CN)4] with dissolved CO2 by dynamic light scattering,” J. Phys. Chem. B 118, 4636–4646 (2014).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

M. I. Mishchenko, “Directional radiometry and radiative transfer: The convoluted path from centuries-old phenomenology to physical optics,” J. Quant. Spectrosc. Radiat. Transfer 146, 4–33 (2014).
[Crossref]

Johns Hopkins APL Tech. Dig. (1)

R. L. McCally, “Laser eye safety research at apl,” Johns Hopkins APL Tech. Dig. 26, 46–55 (2005).

Meas. Sci. Technol. (1)

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33 (2001).
[Crossref]

Opt. Eng. (1)

M. J. McGill and J. D. Spinhirne, “Comparison of two direct-detection Doppler lidar techniques,” Opt. Eng. 37, 2675–2686 (1998).
[Crossref]

Opt. Express (4)

Opt. Rev. (1)

Z. Liu and T. Kobayashi, “Differential discrimination technique for incoherent Doppler lidar to measure atmospheric wind and backscatter ratio,” Opt. Rev. 3, 47–52 (1996).
[Crossref]

Proc. SPIE (4)

Y. Durand, R. Meynart, M. Endemann, E. Chinal, D. Morançais, T. Schröder, and O. Reitebuch, “Manufacturing of an airborne demonstrator of ALADIN: the direct detection Doppler wind lidar for ADM-aeolus,” Proc. SPIE 5984, 598401 (2005).
[Crossref]

G. Avila and P. Singh, “Optical fiber scrambling and light pipes for high accuracy radial velocities measurements,” Proc. SPIE 7018, 70184W (2008).
[Crossref]

S. Mahadevan, J. Ge, C. DeWitt, J. C. van Eyken, and G. Friedman, “Design of a stable fixed delay interferometer prototype for the ET project,” Proc. SPIE 5492, 615–623 (2004).

L. Rodriguez-Cobo, M. Lomer, C. Galindez, and J. M. Lopez-Higuera, “Speckle characterization in multimode fibers for sensing applications,” Proc. SPIE 8413, 84131R (2012).

Rev. Sci. Instrum. (1)

O. Novák, I. S. Falconer, R. Sanginés, M. Lattemann, R. N. Tarrant, D. R. McKenzie, and M. M. M. Bilek, “Fizeau interferometer system for fast high resolution studies of spectral line shapes,” Rev. Sci. Instrum. 82, 023105 (2011).
[Crossref]

Zeitschrift für Instrumentenkunde (1)

G. Hansen, “Die sichtbarkeit der interferenzen beim Michelson- und Twyman-interferometer,” Zeitschrift für Instrumentenkunde 61, 411 (1941).

Other (24)

C. J. Grund and S. Tucker, “Optical autocovariance wind lidar (OAWL): a new approach to direct-detection Doppler wind profiling,” in Fifth Symposium on Lidar Atmospheric Applications, Seattle, Washington (American Meteorological Society, 2011).

G. Looye, T. Lombaerts, and T. Kier, “Design and flight testing of feedback control laws,” (The DLR Project Wetter & Fliegen, German Aerospace Center, 2012), pp. 162–170.

H. Inokuchi, M. Furuta, and T. Inagaki, “High altitude turbulence detection using an airborne Doppler lidar,” in 29th Congress of the International Council of the Aeronautical Sciences (ICAS), St. Petersburg, Russia, 7–12 September2014.

J. Ehlers and N. Fezans, “Airborne Doppler lidar sensor parameter analysis for wake vortex impact alleviation purposes,” in Advances in Aerospace Guidance, Navigation and Control: Selected Papers of the Third CEAS Specialist Conference on Guidance, Navigation and Control held in Toulouse, J. Bordeneuve-Guibé, A. Drouin, and C. Roos, eds. (Springer, 2015), pp. 433–453.

J. Schwithal and N. Fezans, Institut für Flugsystemtechnik (FT), German Aerospace Center (DLR), Lilienthalplatz 7, 38108 Braunschweig, Germany (personal communication, 2016).

N. Fezans, J. Schwithal, and D. Fischenberg, “In-flight remote sensing and characterization of gusts, turbulence, and wake vortices,” in Deutscher Luft- und Raumfahrtkongress, Rostock, Germany, 2015.

S. I. N. Banakh and A. Viktor, Coherent Doppler Wind Lidars in a Turbulent Atmosphere (Artech House, 2013).

J. K. Evans, “An updated examination of aviation accidents associated with turbulence, wind shear and thunderstorm,” (Analytical Mechanics Associates, Inc., 2014) http://ntrs.nasa.gov/search.jsp?R=20160005906 .

Airbus Customer Services, “Flight operations briefing notes—adverse weather operations—optimum use of the weather radar,” http://www.airbus.com/fileadmin/media_gallery/files/safety_library_items/AirbusSafetyLib_-FLT_OPS-ADV_WX-SEQ07.pdf (2007).

J. Baynes and P. Tyrdy, “Rockwell Collins multiscan threattrack TM weather radar,” Rockwell Collins Press release (4February2014. https://www.rockwellcollins.com/Data/News/2014_Cal_Year/CS/FY14CSNR22-ThreatTrack.aspx .

A. M. Title, “Imaging Michelson interferometers,” in Observing Photons in Space: A Guide to Experimental Space Astronomy, M. C. E. Huber, A. Pauluhn, J. L. Culhane, J. G. Timothy, K. Wilhelm, and A. Zehnder, eds. (Springer, 2013), pp. 349–361.

SCHOTT, “Refractive index and dispersion,” SCHOTT Technical Information, TIE-29, 2007.

SCHOTT, “Temperature coefficient of the refractive index,” SCHOTT Technical Information, TIE-19, 2008.

R. T. H. Collis and P. B. Russell, “Lidar measurement of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed., Vol. 14 of Topics in Applied Physics, (Springer, 1976), pp. 71–151.

O. Reitebuch, Institut für Physik der Atmosphäre (IPA), German Aerospace Center (DLR), Oberpfaffenhofen, Münchner Str. 20, 82234 Wessling, Germany (personal communication, 2016).

B. Witschas, “Light scattering on molecules in the atmosphere,” in Atmospheric Physics: Background–Methods–Trends, U. Schumann, ed. (Springer, 2012), pp. 69–83.

T. Wriedt, “Mie theory: a review,” in The Mie Theory: Basics and Applications, W. Hergert and T. Wriedt, eds. (Springer, 2012), pp. 53–71.

P. Vrancken, M. Wirth, B. Ehret, G. Witschas, H. Veermann, R. Tump, H. Barny, P. Rondeau, A. Dolfi-Bouteyre, and L. Lombard, “Flight tests of the delicate airborne lidar system for remote clear air turbulence detection,” in 27th International Laser Radar Conference, New York, 2015.

D. J. Moorhouse and R. J. Woodcock, “Background information and user guide for MIL-F-8785C, military specification-flying qualities of piloted airplanes,” (Air Force Wright Aeronautical Labs Wright-Patterson Air Force Base, 1982)..

R. M. Measures, Laser Remote Sensing (Wiley, 1992).

Hamamatsu, PMT Handbook, version 3 (Hamamatsu Photonics, 2007).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).

J. M. Harlander and C. Englert, “Design of a real-fringe DASH interferometer for observations of thermospheric winds from a small satellite,” in Imaging and Applied Optics, OSA Technical Digest (online) (Optical Society of America, 2013), paper FW1D.2.

U. Paffrath, “Performance assessment of the Aeolus Doppler wind lidar prototype,” Dissertation DLR-FB–2006-2012 (DLR-Forschungsbericht, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Penalty factor of wind speed measurement κ VLOS (blue), contrast factor G(FSR) (green: R b = 1 , magenta: R b = 2 ), and phase sensitivity S (black) as a function of FSR for 273 K, R b = 1 at a wavelength of 355 nm.
Fig. 2.
Fig. 2. (i) Ray-tracing layout of a Newton telescope with three point sources (1,2,3) at distance R and planes a, b, and c. (ii) Marginal ray angles as a function of R without tilt ( δ = 0 , green) and with a tilt of the laser beam ( δ = 0.1    mrad , blue). (iii) Angular sensitivity of fringe shapes of a fringe-imaging Fizeau interferometer and of a fringe-imaging Michelson interferometer, the latter with and without field widening for collimated light and incidence angle distributions of σ 0 = ± 20    mrad . For better visibility, the fringes for angular distributed light have been shifted in the x-direction. (iv) Illumination beam diameter as a function of distance R for different distances d b .
Fig. 3.
Fig. 3. Monolithic fringe-imaging Michelson interferometer (FWFIMI) tilted by 2° with air arm (1) and glass arm (2).
Fig. 4.
Fig. 4. OPD change in wavelengths as a function of incident angle for FWFIMI field widened for θ t = 0 ° and 2° and uncompensated FIMI. Vertical lines mark the respective tilt angle ( θ t ).
Fig. 5.
Fig. 5. (a) Temperature tuning rate for tuning modes: constant density (TTCD) and constant pressure (TTCP) as a function of the CTE of the spacer and according length of the FS part of a composite spacer made of silica and calcium fluoride. (b) Three-dimensional model of the FWFIMI with composite spacers in the air arm.
Fig. 6.
Fig. 6. Global contrast for angular distributed light incident on an FWFIMI, where the arm lengths d 1 and d 2 are varied around the ideal values for mean angles of incidence of θ t = 2 ° (a) and θ t = 0 ° (b). Tolerances are indicated by white squares.
Fig. 7.
Fig. 7. Effect of net surface radial curvature on fringe shape (a) scheme of the non-sequential ray trace. (b) Integrated fringe shapes of an ideal uncurved fringe ( S E = ) and of the simulated fringes (c) for radial surface errors of S E = 20 (left) and S E = 10 (right).
Fig. 8.
Fig. 8. Integrated interference fringe shape shifted within round (a) and quadratic (b) illumination and for an additional central obscuration (black circle, dotted lines).
Fig. 9.
Fig. 9. Global fringe contrast as a function of the distance ( d z ) from the exit face of the FWFIMI. Inset: Global fringe patterns for increasing values of d z and ray-tracing layout of the FWFIMI used for the simulations.
Fig. 10.
Fig. 10. (i) Receiver setup for the range-resolved measurement of wind speeds. Blue boxes mark components to be inserted for a fiber-coupled setup. (ii) Scheme of a two-lens optical scrambler with two aspheres of focal length f. (iii) Signal processing: light distributions on the linear detector (LPMT1) for reference and signal light (illumination function neglected).
Fig. 11.
Fig. 11. (a) Detector SNR of one pulse for h = 10 , 000    m , R b = 1 and (b)  h = 1000    m , R b = 6 in the cases of the laser transmitters: “WALES,” “MULTIPLY,” “AWIATOR,” and “HYPO.” Two curves are shown for every transmitter, giving the SNR of one center and one edge pixel of the PMT array illuminated with a centered interference fringe. Colored areas mark the regions in between where the SNR values of the other pixels are located. Additional black squares mark the SNR of the third pixel in case of WALES. The solid black line marks a range dependence of the SNR proportional to 1/Range. (c) Total speckle patterns for h = 10 , 000    m , R b = 1 and for h = 1000    m , R b = 6. (d) Exemplary downsampled speckle distribution for one WALES pulse at h = 1000    m , R b = 6 and the respective integrated distributions on a linear detector for 10 signal pulses and 1000 reference pulses.
Fig. 12.
Fig. 12. Results of the end-to-end simulation: the standard deviation σ ( u r ) of the determined wind speed u r as a function of range R for the transmitters “WALES,” “MULTIPLY,” “AWIATOR,” and “HYPO” in case of weak backscattering signal ( h = 10 , 000    m , R b = 1 ) and strong backscattering signal ( h = 1000    m , R b = 6 ). σ ( u r ) is obtained by performing the simulated measurement 50 times in a row. For every measurement, digital averaging is applied for a measurement duration of 0.1 s [ME(0.1 s)]. Three cases are considered: 1. only detector noise (DN), 2. DN and atmospheric speckle, and 3. DN, atmospheric and fiber speckle, and crosstalk. In the last case, the reference measurement is averaged over 1000 pulses for every transmitter type.

Tables (1)

Tables Icon

Table 1. Penalty Factors for Wind Speed Measurement

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

I RMLS ( ν ) = 1 R b 1 2 π σ G exp [ ( ν ν c 2 σ G ) 2 ] + ( 1 1 R b ) 1 2 π ( σ L 2 + σ w 2 ) exp [ ( ν ν c 2 σ L 2 + σ w 2 ) 2 ] .
n p ( ν L , R ) = E L Δ R h ν L A R 2 ξ ( r ) η R η T β exp ( 2 0 R α d r ) .
I ( x , y , ν ) = FI 0 [ 1 + V cos ( φ ) ] .
I F ( x , y , ν ) = FI 0 [ 1 + W ( T , α ) cos ( φ + Δ φ ) ] .
G ( FSR ) = exp [ 2 ( π Δ ν L FSR ) 2 ] × ( 1 R b exp [ 2 ( π σ Ray / FSR ) 2 ] + ( 1 1 R b ) ) .
κ VLOS = ϵ FIMI ϵ ISA = d c FSR 2 c ( 1 1 V 2 exp [ 8 c d c FSR ] 2 ) 1 / 2 .
OPD = 2 n 1 d 1 cos ( σ 1 ) n 2 d 2 ( cos ( σ 2 ) + cos ( σ 2 ± 2 θ ) ) .
OPD ( σ 0 ) = 2 n 1 d 1 1 sin 2 ( σ 0 ) n 1 2 2 n 2 d 2 1 sin 2 ( σ 0 ) n 2 2 ,
OPD ( σ 0 ) = 2 ( n 1 d 1 n 2 d 2 ) sin 2 ( σ 0 ) ( d 1 n 1 d 2 n 2 ) O ( σ 0 4 )
w = d 1 n 1 d 2 n 2 = 0 .
OPD 0 ( θ t ) = 2 [ n 1 d 1 1 sin 2 ( θ t ) n 1 2 n 2 d 2 1 sin 2 ( θ t ) n 2 2 ] ,
w ( θ t ) = d 1 n 1 2 sin 2 ( θ t ) d 2 n 2 2 sin 2 ( θ t ) .
n g r ( λ ) = 1 + B 1 λ 2 λ 2 C 1 + B 2 λ 2 λ 2 C 2 + B 3 λ 2 λ 2 C 3 .
OPD 0 ( θ t ) T = 0 = 2 [ α 1 d 1 ( n 1 2 sin 2 ( θ t ) ) 1 2 + β 1 n 1 d 1 ( n 1 2 sin 2 ( θ t ) ) 1 2 ] 2 [ α 2 d 2 ( n 2 2 sin 2 ( θ t ) ) 1 2 + β 2 n 2 d 2 ( n 2 2 sin 2 ( θ t ) ) 1 2 ] .
d n g a ( λ L , T ) d T = n 2 2 ( λ L , T 0 ) 1 2 n 2 ( λ L , T 0 ) ( D 0 + 2 D 1 Δ T + 3 D 2 Δ T 2 + E 0 + 2 E 1 Δ T λ L 2 λ T K 2 ) .
β 1 = d n a ( λ L , T ) d T = 0.00367 × n a ( λ L , T , p ) 1 1 + 0.00367 ( 1 ° C C ) T ,
n a ( λ L , T , p ) = 1 + n a ( λ L , 15 ° C , p 0 ) 1 1 + 3.4785 × 10 3 1 ° C ( T 15 ° C ) p p 0 λ L 2 ,
α 1 CD = n g r 2 ( 1 n g r + α 2 ) ,
α 1 CP = n g a ( T o p ) ( n a ( T o p ) ) 2 × β 2 + ( n g a ( T o p ) ) 2 ( n a ( T o p ) ) 2 × α 2 1 n 1 × β 1 .
I tot = | r E 0 + t E 0 exp j φ | 2 = I 0 [ 1 + V BS cos ( φ ) ] .
p I ( I ) = 1 / I exp ( I / I ) .
i n = i T 2 + i SD 2 + i SL 2 + i SBG 2 .
f ( w , x ) = w 0 ( 1 + w 1 cos ( x + w 2 ) ) + w 3 .

Metrics