Abstract

In this paper, we discuss four different configurations of metal/dielectric thin films systems: surface plasmon resonance, coupled plasmon-waveguide resonance, metallic waveguide-coupled surface plasmon resonance, and dielectric waveguide-coupled surface plasmon resonance. For the waveguide-coupled surface plasmon resonance thin film systems, we explore several waveguide thicknesses that produce different resonant line shapes, including plasmon-induced transparency and waveguide-induced transparency. This paper presents a theoretical analysis and comparison of the intensity and phase sensitivities to changes in the index of refraction in a sensing layer external to the thin film system. We discuss the material parameters and the variations that led to the sensitivity variations in each thin film system. We show that when the surface plasmon polariton mode is coupled with dielectric waveguides, there is an enhancement of the sensitivity. The plasmon-induced transparency is used to increase the dynamic range of the system and shows a monotonically increasing intensity in the range of 0.4 refractive index units.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Strong resonant coupling of surface plasmon polaritons to radiation modes through a thin metal slab with dielectric gratings

Su Shen, Erik Forsberg, Zhanghua Han, and Sailing He
J. Opt. Soc. Am. A 24(1) 225-230 (2007)

Effect of coupled graphene oxide on the sensitivity of surface plasmon resonance detection

Yeonsoo Ryu, Seyoung Moon, Youngjin Oh, Yonghwi Kim, Taewoong Lee, Dong Ha Kim, and Donghyun Kim
Appl. Opt. 53(7) 1419-1426 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription