Abstract

In this paper, we propose what we believe is a novel sensitive micro-optoelectromechanical systems (MOEMS) accelerometer based on intensity modulation by using a one-dimensional photonic crystal. The optical sensing system of the proposed structure includes an air-dielectric multilayer photonic bandgap material, a laser diode (LD) light source, a typical photodiode (1550 nm) and a set of integrated optical waveguides. The proposed sensor provides several advantages, such as a relatively wide measurement range, good linearity in the whole measurement range, integration capability, negligible cross-axis sensitivity, high reliability, and low air-damping coefficient, which results in a wider frequency bandwidth for a fixed resonance frequency. Simulation results show that the functional characteristics of the sensor are as follows: a mechanical sensitivity of 119.21 nm/g, a linear measurement range of ±38g and a resonance frequency of 1444 Hz. Thanks to the above-mentioned characteristics, the proposed MOEMS accelerometer is suitable for a wide spectrum of applications, ranging from consumer electronics to aerospace and inertial navigation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Novel accelerometer realized by a polarization-maintaining photonic crystal fiber for railway monitoring applications

Zhengyong Liu, Lin Htein, Dinusha Serandi Gunawardena, Weng-Hong Chung, Chao Lu, Kang-Kuen Lee, and Hwa-Yaw Tam
Opt. Express 27(15) 21597-21607 (2019)

Micro-optical vibrometer/accelerometer using dielectric microspheres

Amir R. Ali
Appl. Opt. 58(16) 4211-4219 (2019)

Minimizing cross-axis sensitivity in grating-based optomechanical accelerometers

Qianbo Lu, Chen Wang, Jian Bai, Kaiwei Wang, Shuqi Lou, Xufen Jiao, Dandan Han, Guoguang Yang, Dong Liu, and Yongying Yang
Opt. Express 24(8) 9094-9111 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription