Abstract

Optical sources with highly temperature-stable output intensity and low power consumption are desired in portable devices for metrology, and in medical applications, communications, and illumination. This paper introduces and demonstrates an optical stabilization scheme that uses the drift in peak-emission wavelength of light emitted from an LED as a temperature feedback signal to realize output intensity temperature coefficients below 100 ppm/K. The control principle relies on a conventional feedback loop but with a specially designed weakly polarizing optical interference coating that exhibits different transmittivity/reflectivity ratio dependence on wavelength for two different polarizations and by using a weighted sum of two polarizations as the output power correcting signal in a feedback loop. The method does not need a thermometer or temperature control stage, and its calibration can be performed electronically, adding to the simplicity of the design and making it also suitable for portable and battery-operated instruments.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stability design of a light-emitting diode light source for trace constituent concentration measurement

Ling Ma, Fajie Duan, Jiajia Jiang, Xiao Fu, Tingting Huang, and Jingtao Chen
Appl. Opt. 56(36) 10046-10054 (2017)

Liquid-crystal-modulated correlated color temperature tunable light-emitting diode with highly accurate regulation

Chiu-Chang Huang, Yu-Yi Kuo, Szu-Hua Chen, Wei-Ting Chen, and Chih-Yu Chao
Opt. Express 23(3) A149-A156 (2015)

Design of circadian white light-emitting diodes with tunable color temperature and nearly perfect color rendition

Peifen Zhu, Hongyang Zhu, Gopi C. Adhikari, and Saroj Thapa
OSA Continuum 2(8) 2413-2427 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription