Abstract

A single-step fabrication method is presented for ultra-thin, linearly variable optical bandpass filters (LVBFs) based on a metal–insulator–metal arrangement using modified evaporation deposition techniques. This alternate process methodology offers reduced complexity and cost in comparison to conventional techniques for fabricating LVBFs. We are able to achieve linear variation of insulator thickness across a sample, by adjusting the geometrical parameters of a typical physical vapor deposition process. We demonstrate LVBFs with spectral selectivity from 400 to 850 nm based on Ag (25 nm) and MgF2 (75–250 nm). Maximum spectral transmittance is measured at 70% with a Q-factor of 20.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-thin broadband nanostructured insulator-metal-insulator-metal plasmonic light absorber

Aliaksandr Hubarevich, Aliaksandr Kukhta, Hilmi Volkan Demir, Xiaowei Sun, and Hong Wang
Opt. Express 23(8) 9753-9761 (2015)

Monolithic chip-scale structural color filters fabricated with simple UV lithography

Tingbiao Guo, Julian Evans, Nan Wang, and Sailing He
Opt. Express 27(15) 21646-21651 (2019)

Standard red green blue (sRGB) color representation with a tailored dual-resonance mode in metal/dielectric stacks

Do Hyeon Kim, Young Jin Yoo, Joo Hwan Ko, Yeong Jae Kim, and Young Min Song
Opt. Mater. Express 9(8) 3342-3351 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 1969).
  2. A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. Correia, and R. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A 162, 400–405 (2010).
    [Crossref]
  3. N. P. Ayerden, G. de Graaf, and R. F. Wolffenbuttel, “Compact gas cell integrated with a linear variable optical filter,” Opt. Express 24, 2981–3002 (2016).
    [Crossref]
  4. M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21, 2897–2902 (2003).
    [Crossref]
  5. A. Piegari, J. Bulir, and A. Krasilnikova Sytchkova, “Variable narrow-band transmission filters for spectrometry from space. 2. Fabrication process,” Appl. Opt. 47, C151–C156 (2008).
    [Crossref]
  6. C. Moser, L. Ho, E. Maye, and F. Havermeyer, “Fabrication and applications of volume holographic optical filters in glass,” J. Phys. D 41, 224003 (2008).
    [Crossref]
  7. T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).
  8. V. Raj Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5, 12450 (2015).
    [Crossref]
  9. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref]
  10. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
    [Crossref]
  11. C. Williams, Y. Montelongo, J. O. Tenorio-Pearl, A. Cabrero-Vilatela, S. Hofmann, W. I. Milne, and T. D. Wilkinson, “Engineered pixels using active plasmonic holograms with liquid crystals,” Phys. Status Solidi RRL 9, 125–129 (2015).
  12. Y. Montelongo, J. O. Tenorio-Pearl, C. Williams, S. Zhang, W. I. Milne, and T. D. Wilkinson, “Plasmonic nanoparticle scattering for color holograms,” Proc. Natl. Acad. Sci. 111, 12679–12683 (2014).
    [Crossref]
  13. B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 1–9 (2013).
  14. Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photon. 2, 183–188 (2015).
    [Crossref]
  15. G. Kajtár, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Theoretical model of homogeneous metal-insulator-metal perfect multi-band absorbers for the visible spectrum,” J. Phys. D 49, 055104 (2016).
  16. K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9, 2579–2583 (2009).
    [Crossref]
  17. M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20–24 (2012).
    [Crossref]
  18. Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
    [Crossref]
  19. S. Franssila, Introduction to Microfabrication (Wiley-Blackwell, 2010).
  20. A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, and R. F. Wolffenbuttel, “IC-compatible fabrication of linear variable optical filters for microspectrometer,” Procedia Chem. 1, 1143–1146 (2009).
    [Crossref]
  21. M. Ohring, Materials Science of Thin Films (Academic, 1992).
  22. Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/ .
  23. G. S. S. Saini and S. K. Tripathi, Thin Solid Films (Elsevier, 1995).

2016 (2)

G. Kajtár, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Theoretical model of homogeneous metal-insulator-metal perfect multi-band absorbers for the visible spectrum,” J. Phys. D 49, 055104 (2016).

N. P. Ayerden, G. de Graaf, and R. F. Wolffenbuttel, “Compact gas cell integrated with a linear variable optical filter,” Opt. Express 24, 2981–3002 (2016).
[Crossref]

2015 (3)

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photon. 2, 183–188 (2015).
[Crossref]

C. Williams, Y. Montelongo, J. O. Tenorio-Pearl, A. Cabrero-Vilatela, S. Hofmann, W. I. Milne, and T. D. Wilkinson, “Engineered pixels using active plasmonic holograms with liquid crystals,” Phys. Status Solidi RRL 9, 125–129 (2015).

V. Raj Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5, 12450 (2015).
[Crossref]

2014 (2)

Y. Montelongo, J. O. Tenorio-Pearl, C. Williams, S. Zhang, W. I. Milne, and T. D. Wilkinson, “Plasmonic nanoparticle scattering for color holograms,” Proc. Natl. Acad. Sci. 111, 12679–12683 (2014).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

2013 (1)

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 1–9 (2013).

2012 (1)

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20–24 (2012).
[Crossref]

2011 (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

2010 (2)

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. Correia, and R. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A 162, 400–405 (2010).
[Crossref]

2009 (2)

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, and R. F. Wolffenbuttel, “IC-compatible fabrication of linear variable optical filters for microspectrometer,” Procedia Chem. 1, 1143–1146 (2009).
[Crossref]

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9, 2579–2583 (2009).
[Crossref]

2008 (3)

C. Moser, L. Ho, E. Maye, and F. Havermeyer, “Fabrication and applications of volume holographic optical filters in glass,” J. Phys. D 41, 224003 (2008).
[Crossref]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

A. Piegari, J. Bulir, and A. Krasilnikova Sytchkova, “Variable narrow-band transmission filters for spectrometry from space. 2. Fabrication process,” Appl. Opt. 47, C151–C156 (2008).
[Crossref]

2003 (1)

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21, 2897–2902 (2003).
[Crossref]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9, 2579–2583 (2009).
[Crossref]

Aydin, K.

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photon. 2, 183–188 (2015).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Ayerden, N. P.

Bartoli, F. J.

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 1–9 (2013).

Blanchard, R.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20–24 (2012).
[Crossref]

Bozler, C.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21, 2897–2902 (2003).
[Crossref]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Bulir, J.

Butun, S.

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photon. 2, 183–188 (2015).
[Crossref]

Cabrero-Vilatela, A.

C. Williams, Y. Montelongo, J. O. Tenorio-Pearl, A. Cabrero-Vilatela, S. Hofmann, W. I. Milne, and T. D. Wilkinson, “Engineered pixels using active plasmonic holograms with liquid crystals,” Phys. Status Solidi RRL 9, 125–129 (2015).

Capasso, F.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20–24 (2012).
[Crossref]

Choi, D.-Y.

V. Raj Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5, 12450 (2015).
[Crossref]

Correia, J.

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. Correia, and R. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A 162, 400–405 (2010).
[Crossref]

Cui, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

de Graaf, G.

N. P. Ayerden, G. de Graaf, and R. F. Wolffenbuttel, “Compact gas cell integrated with a linear variable optical filter,” Opt. Express 24, 2981–3002 (2016).
[Crossref]

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. Correia, and R. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A 162, 400–405 (2010).
[Crossref]

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, and R. F. Wolffenbuttel, “IC-compatible fabrication of linear variable optical filters for microspectrometer,” Procedia Chem. 1, 1143–1146 (2009).
[Crossref]

Diest, K.

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9, 2579–2583 (2009).
[Crossref]

Ding, F.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Dionne, J. A.

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9, 2579–2583 (2009).
[Crossref]

Ebbesen, T. W.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

Economou, E. N.

G. Kajtár, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Theoretical model of homogeneous metal-insulator-metal perfect multi-band absorbers for the visible spectrum,” J. Phys. D 49, 055104 (2016).

Emadi, A.

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. Correia, and R. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A 162, 400–405 (2010).
[Crossref]

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, and R. F. Wolffenbuttel, “IC-compatible fabrication of linear variable optical filters for microspectrometer,” Procedia Chem. 1, 1143–1146 (2009).
[Crossref]

Enoksson, P.

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. Correia, and R. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A 162, 400–405 (2010).
[Crossref]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Fijol, J.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21, 2897–2902 (2003).
[Crossref]

Fike, E.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21, 2897–2902 (2003).
[Crossref]

Franssila, S.

S. Franssila, Introduction to Microfabrication (Wiley-Blackwell, 2010).

Frish, M.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21, 2897–2902 (2003).
[Crossref]

Fritze, M.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21, 2897–2902 (2003).
[Crossref]

Gao, Y.

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 1–9 (2013).

Genet, C.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

Genevet, P.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20–24 (2012).
[Crossref]

Grabarnik, S.

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. Correia, and R. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A 162, 400–405 (2010).
[Crossref]

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, and R. F. Wolffenbuttel, “IC-compatible fabrication of linear variable optical filters for microspectrometer,” Procedia Chem. 1, 1143–1146 (2009).
[Crossref]

Guo, L. J.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).

Havermeyer, F.

C. Moser, L. Ho, E. Maye, and F. Havermeyer, “Fabrication and applications of volume holographic optical filters in glass,” J. Phys. D 41, 224003 (2008).
[Crossref]

He, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

He, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Hedsten, K.

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. Correia, and R. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A 162, 400–405 (2010).
[Crossref]

Ho, L.

C. Moser, L. Ho, E. Maye, and F. Havermeyer, “Fabrication and applications of volume holographic optical filters in glass,” J. Phys. D 41, 224003 (2008).
[Crossref]

Hofmann, S.

C. Williams, Y. Montelongo, J. O. Tenorio-Pearl, A. Cabrero-Vilatela, S. Hofmann, W. I. Milne, and T. D. Wilkinson, “Engineered pixels using active plasmonic holograms with liquid crystals,” Phys. Status Solidi RRL 9, 125–129 (2015).

Jacobson, S.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21, 2897–2902 (2003).
[Crossref]

Jin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Kafesaki, M.

G. Kajtár, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Theoretical model of homogeneous metal-insulator-metal perfect multi-band absorbers for the visible spectrum,” J. Phys. D 49, 055104 (2016).

Kajtár, G.

G. Kajtár, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Theoretical model of homogeneous metal-insulator-metal perfect multi-band absorbers for the visible spectrum,” J. Phys. D 49, 055104 (2016).

Kats, M. A.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20–24 (2012).
[Crossref]

Keast, C.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21, 2897–2902 (2003).
[Crossref]

Keating, P.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21, 2897–2902 (2003).
[Crossref]

Kessler, B.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21, 2897–2902 (2003).
[Crossref]

Kim, E.-S.

V. Raj Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5, 12450 (2015).
[Crossref]

Knecht, J.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21, 2897–2902 (2003).
[Crossref]

Krasilnikova Sytchkova, A.

Laux, E.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

LeBlanc, J.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21, 2897–2902 (2003).
[Crossref]

Lee, S.-S.

V. Raj Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5, 12450 (2015).
[Crossref]

Li, Z.

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photon. 2, 183–188 (2015).
[Crossref]

Lin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Luo, X.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 1969).

Manolatou, C.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21, 2897–2902 (2003).
[Crossref]

Maye, E.

C. Moser, L. Ho, E. Maye, and F. Havermeyer, “Fabrication and applications of volume holographic optical filters in glass,” J. Phys. D 41, 224003 (2008).
[Crossref]

Milne, W. I.

C. Williams, Y. Montelongo, J. O. Tenorio-Pearl, A. Cabrero-Vilatela, S. Hofmann, W. I. Milne, and T. D. Wilkinson, “Engineered pixels using active plasmonic holograms with liquid crystals,” Phys. Status Solidi RRL 9, 125–129 (2015).

Y. Montelongo, J. O. Tenorio-Pearl, C. Williams, S. Zhang, W. I. Milne, and T. D. Wilkinson, “Plasmonic nanoparticle scattering for color holograms,” Proc. Natl. Acad. Sci. 111, 12679–12683 (2014).
[Crossref]

Montelongo, Y.

C. Williams, Y. Montelongo, J. O. Tenorio-Pearl, A. Cabrero-Vilatela, S. Hofmann, W. I. Milne, and T. D. Wilkinson, “Engineered pixels using active plasmonic holograms with liquid crystals,” Phys. Status Solidi RRL 9, 125–129 (2015).

Y. Montelongo, J. O. Tenorio-Pearl, C. Williams, S. Zhang, W. I. Milne, and T. D. Wilkinson, “Plasmonic nanoparticle scattering for color holograms,” Proc. Natl. Acad. Sci. 111, 12679–12683 (2014).
[Crossref]

Moser, C.

C. Moser, L. Ho, E. Maye, and F. Havermeyer, “Fabrication and applications of volume holographic optical filters in glass,” J. Phys. D 41, 224003 (2008).
[Crossref]

Ohring, M.

M. Ohring, Materials Science of Thin Films (Academic, 1992).

Piegari, A.

Raj Shrestha, V.

V. Raj Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5, 12450 (2015).
[Crossref]

Saini, G. S. S.

G. S. S. Saini and S. K. Tripathi, Thin Solid Films (Elsevier, 1995).

Skauli, T.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

Soukoulis, C. M.

G. Kajtár, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Theoretical model of homogeneous metal-insulator-metal perfect multi-band absorbers for the visible spectrum,” J. Phys. D 49, 055104 (2016).

Spain, M.

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9, 2579–2583 (2009).
[Crossref]

Tenorio-Pearl, J. O.

C. Williams, Y. Montelongo, J. O. Tenorio-Pearl, A. Cabrero-Vilatela, S. Hofmann, W. I. Milne, and T. D. Wilkinson, “Engineered pixels using active plasmonic holograms with liquid crystals,” Phys. Status Solidi RRL 9, 125–129 (2015).

Y. Montelongo, J. O. Tenorio-Pearl, C. Williams, S. Zhang, W. I. Milne, and T. D. Wilkinson, “Plasmonic nanoparticle scattering for color holograms,” Proc. Natl. Acad. Sci. 111, 12679–12683 (2014).
[Crossref]

Tripathi, S. K.

G. S. S. Saini and S. K. Tripathi, Thin Solid Films (Elsevier, 1995).

Wilkinson, T. D.

C. Williams, Y. Montelongo, J. O. Tenorio-Pearl, A. Cabrero-Vilatela, S. Hofmann, W. I. Milne, and T. D. Wilkinson, “Engineered pixels using active plasmonic holograms with liquid crystals,” Phys. Status Solidi RRL 9, 125–129 (2015).

Y. Montelongo, J. O. Tenorio-Pearl, C. Williams, S. Zhang, W. I. Milne, and T. D. Wilkinson, “Plasmonic nanoparticle scattering for color holograms,” Proc. Natl. Acad. Sci. 111, 12679–12683 (2014).
[Crossref]

Williams, C.

C. Williams, Y. Montelongo, J. O. Tenorio-Pearl, A. Cabrero-Vilatela, S. Hofmann, W. I. Milne, and T. D. Wilkinson, “Engineered pixels using active plasmonic holograms with liquid crystals,” Phys. Status Solidi RRL 9, 125–129 (2015).

Y. Montelongo, J. O. Tenorio-Pearl, C. Williams, S. Zhang, W. I. Milne, and T. D. Wilkinson, “Plasmonic nanoparticle scattering for color holograms,” Proc. Natl. Acad. Sci. 111, 12679–12683 (2014).
[Crossref]

Wolffenbuttel, R.

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. Correia, and R. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A 162, 400–405 (2010).
[Crossref]

Wolffenbuttel, R. F.

N. P. Ayerden, G. de Graaf, and R. F. Wolffenbuttel, “Compact gas cell integrated with a linear variable optical filter,” Opt. Express 24, 2981–3002 (2016).
[Crossref]

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, and R. F. Wolffenbuttel, “IC-compatible fabrication of linear variable optical filters for microspectrometer,” Procedia Chem. 1, 1143–1146 (2009).
[Crossref]

Wu, H.

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. Correia, and R. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A 162, 400–405 (2010).
[Crossref]

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, and R. F. Wolffenbuttel, “IC-compatible fabrication of linear variable optical filters for microspectrometer,” Procedia Chem. 1, 1143–1146 (2009).
[Crossref]

Wu, Y.-K.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).

Xu, T.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).

Yang, L.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Ye, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Zeng, B.

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 1–9 (2013).

Zhang, S.

Y. Montelongo, J. O. Tenorio-Pearl, C. Williams, S. Zhang, W. I. Milne, and T. D. Wilkinson, “Plasmonic nanoparticle scattering for color holograms,” Proc. Natl. Acad. Sci. 111, 12679–12683 (2014).
[Crossref]

Zhong, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

ACS Photon. (1)

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photon. 2, 183–188 (2015).
[Crossref]

Appl. Opt. (1)

J. Phys. D (2)

C. Moser, L. Ho, E. Maye, and F. Havermeyer, “Fabrication and applications of volume holographic optical filters in glass,” J. Phys. D 41, 224003 (2008).
[Crossref]

G. Kajtár, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Theoretical model of homogeneous metal-insulator-metal perfect multi-band absorbers for the visible spectrum,” J. Phys. D 49, 055104 (2016).

J. Vac. Sci. Technol. B (1)

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21, 2897–2902 (2003).
[Crossref]

Laser Photon. Rev. (1)

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Nano Lett. (1)

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9, 2579–2583 (2009).
[Crossref]

Nat. Commun. (2)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).

Nat. Mater. (1)

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20–24 (2012).
[Crossref]

Nat. Photonics (1)

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

Opt. Express (1)

Phys. Status Solidi RRL (1)

C. Williams, Y. Montelongo, J. O. Tenorio-Pearl, A. Cabrero-Vilatela, S. Hofmann, W. I. Milne, and T. D. Wilkinson, “Engineered pixels using active plasmonic holograms with liquid crystals,” Phys. Status Solidi RRL 9, 125–129 (2015).

Proc. Natl. Acad. Sci. (1)

Y. Montelongo, J. O. Tenorio-Pearl, C. Williams, S. Zhang, W. I. Milne, and T. D. Wilkinson, “Plasmonic nanoparticle scattering for color holograms,” Proc. Natl. Acad. Sci. 111, 12679–12683 (2014).
[Crossref]

Procedia Chem. (1)

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, and R. F. Wolffenbuttel, “IC-compatible fabrication of linear variable optical filters for microspectrometer,” Procedia Chem. 1, 1143–1146 (2009).
[Crossref]

Sci. Rep. (2)

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 1–9 (2013).

V. Raj Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5, 12450 (2015).
[Crossref]

Sens. Actuators A (1)

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. Correia, and R. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A 162, 400–405 (2010).
[Crossref]

Other (5)

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 1969).

M. Ohring, Materials Science of Thin Films (Academic, 1992).

Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/ .

G. S. S. Saini and S. K. Tripathi, Thin Solid Films (Elsevier, 1995).

S. Franssila, Introduction to Microfabrication (Wiley-Blackwell, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. MIM filter design. (a) Constant cavity thickness MIM LVBF composed of Ag (40 nm) and MgF2 dielectric with FDTD simulation results in (b) the E-field profile at first-order resonance (inset). (c) MIM LVBF with gradient dielectric. (d) Simulated spectral properties as the position of observation on the sample changes (blue–red = dielectric thickness increase).
Fig. 2.
Fig. 2. Evaporation principles. (a) Deposition rate profile of a non-ideal source (n=1.5). (b) Normalized deposition as a function of position along sample (on-axis) as substrate height varies. (c) Same as (b) but with lateral offset. (d) Fabrication process flow.
Fig. 3.
Fig. 3. FDTD simulation of MIM. (a) Peak transmission wavelengths as the dielectric and mirror thickness is varied. (b) Respective peak Q-factors; the size of the scatter points is proportional to transmission amplitude. (c) Reflection and transmission of MIM: Ag 25 nm mirrors with varying dielectric thickness.
Fig. 4.
Fig. 4. Optical characterization results of single-wavelength filters. (a) Images of a range of samples with varying dielectric thicknesses showing the color filtering in transmission. (b) Three devices’ reflection and transmission spectra: the MgF2 thickness for each plotted spectrum (line-color: blue, red, black) is 155, 172, and 189 nm, respectively. These are recorded from the quartz crystal thickness monitor.
Fig. 5.
Fig. 5. Optical characterization results of MIM LVBF based on initial conditions. (a) Image taken of final device (length 7.5  cm) in transmission. (b) Reflection and transmission results from spatially varying the objective collection spot linearly across the sample (thinner-thicker dielectric thickness). (Inset) Schematic of single-step deposition.
Fig. 6.
Fig. 6. Optical characterization results of Ag (25 nm): MgF2 (range): Ag (25 nm) linearly variable filter. (a) Images of reflection and transmission of final device and (b) spectra of the device; inset shows an image of the filter in transmission at normal incidence.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Γcosn(θi)Ri2,

Metrics