Abstract

We expansively investigate thermal behaviors of various general-purpose light-emitting diode (LED) lamps and apply our measured results, validated by simulation, to establish lamp design rules for optimizing their optical and thermal properties. These design rules provide the means to minimize lumen depreciation over time by minimizing the periods for lamps to reach thermal steady-state while maintaining their high luminous efficacy and omnidirectional light distribution capability. While it is well known that minimizing the junction temperature of an LED leads to a longer lifetime and an increased lumen output, our study demonstrates, for the first time, to the best of our knowledge, that it is also important to minimize the time it takes to reach thermal equilibrium because doing so minimizes lumen depreciation and enhances light output and color stability during operation. Specifically, we have found that, in addition to inadequate heat-sink fin areas for a lamp configuration, LEDs mounted on multiple boards, as opposed to a single board, lead to longer periods for reaching thermal equilibrium contributing to larger lumen depreciation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Lumen degradation analysis of LED lamps based on the subsystem isolation method

Hong-Liang Ke, Jian Hao, Jian-Hui Tu, Pei-Xian Miao, Chao-Quan Wang, Jing-Zhong Cui, Qiang Sun, and Ren-Tao Sun
Appl. Opt. 57(4) 849-854 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription