Abstract

The damage mechanism of a CCD detector was studied by building an experimental system containing a millisecond pulse laser irradiating a CCD detector. The experimental results show that the damage on the CCD detector was mainly thermal damage, along with mechanical damage. A melting phenomenon was caused by the thermal damage, so that a crater was observed on the surface of the CCD detector. Caused by melting of the polysilicon electrodes and a temperature rise in the silicon dioxide, the shift register impedance values were sharply reduced. Most of the substrate clock signals were broken and disappeared due to melting of channels in the silicon substrate layer, which caused a functional loss for the CCD detector. The mechanical damage on the melting edge of the CCD detector created heave; the temperature gradient caused this damage. In this paper, the decrease in vertical shift register impedance values was consistent with previous test results.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mechanisms for the millisecond laser-induced functional damage to silicon charge-coupled imaging sensors

Zewen Li, Xi Wang, Zhonghua Shen, Jian Lu, and Xiaowu Ni
Appl. Opt. 54(3) 378-388 (2015)

Mechanisms for laser-induced functional damage to silicon charge-coupled imaging sensors

Chenzhi Zhang, Ludovic Blarre, Rodger M. Walser, and Michael F. Becker
Appl. Opt. 32(27) 5201-5210 (1993)

Experiment on the temporal evolution characteristics of a CCD multilayer structure irradiated by a 1.06  μm continuous laser

Min Han, Jinsong Nie, Ke Sun, Xi Wang, and Xian’an Dou
Appl. Opt. 57(16) 4415-4420 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription