Abstract

We present a hybrid laser frequency stabilization method combining modulation transfer spectroscopy (MTS) and frequency modulation spectroscopy (FMS) for the cesium D2 transition. In a typical pump–probe setup, the error signal is a combination of the DC-coupled MTS error signal and the AC-coupled FMS error signal. This combines the long-term stability of the former with the high signal-to-noise ratio of the latter. In addition, we enhance the long-term frequency stability with laser intensity stabilization. By measuring the frequency difference between two independent hybrid spectroscopies, we investigate the short-and long-term stability. We find a long-term stability of 7.8 kHz characterized by a standard deviation of the beating frequency drift over the course of 10 h and a short-term stability of 1.9 kHz characterized by an Allan deviation of that at 2 s of integration time.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Magnetic-enhanced modulation transfer spectroscopy and laser locking for 87Rb repump transition

Jin-Bao Long, Sheng-Jun Yang, Shuai Chen, and Jian-Wei Pan
Opt. Express 26(21) 27773-27786 (2018)

Optimization strategies for modulation transfer spectroscopy applied to laser stabilization

Tilman Preuschoff, Malte Schlosser, and Gerhard Birkl
Opt. Express 26(18) 24010-24019 (2018)

Wideband laser locking to an atomic reference with modulation transfer spectroscopy

V. Negnevitsky and L. D. Turner
Opt. Express 21(3) 3103-3113 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription