Abstract

The bidirectional texture function (BTF) is widely employed to achieve realistic digital reproduction of real-world material appearance. In practice, a BTF measurement device usually does not use high-resolution (HR) cameras in data collection, considering the high equipment cost and huge data space required. The limited image resolution consequently leads to the loss of texture details in BTF data. This paper proposes a fast BTF image super-resolution (SR) algorithm to deal with this issue. The algorithm uses singular value decomposition (SVD) to separate the collected low-resolution (LR) BTF data into intrinsic textures and eigen-apparent bidirectional reflectance distribution functions (eigen-ABRDFs) and then improves the resolution of the intrinsic textures via image SR. The HR BTFs can be finally obtained by fusing the reconstructed HR intrinsic textures with the LR eigen-ABRDFs. Experimental results show that the proposed algorithm outperforms the state-of-the-art single-image SR algorithms in terms of reconstruction accuracy. In addition, thanks to the employment of SVD, the proposed algorithm is computationally efficient and robust to noise corruption.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral bidirectional texture function reconstruction by fusing multiple-color and spectral images

Wei Dong, Hui-Liang Shen, Xin Du, Si-Jie Shao, and John H. Xin
Appl. Opt. 55(36) 10400-10408 (2016)

Optomechanical design of rotary kaleidoscope for bidirectional texture function acquisition

Jiří Čáp, Jan Hošek, Vlastimil Havran, Šárka Němcová, and Karolina Macúchová
Appl. Opt. 56(26) 7373-7384 (2017)

Single image super-resolution using locally adaptive multiple linear regression

Soohwan Yu, Wonseok Kang, Seungyong Ko, and Joonki Paik
J. Opt. Soc. Am. A 32(12) 2264-2275 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription