Abstract

The near and far fields of a finite conductivity metallic grating with symmetrical triangular facets, used in Littrow mount, are studied. A new Green’s function approach, based on the Hertz vector, is introduced and used to propagate throughout a two-dimensional domain. The field quantity of primary interest is Poynting’s vector; however, the stored power is also calculated. In assessing the fields generated by the propagator, a quasi-periodic dependence of output characteristics on the grating depth to period ratio, discussed in the literature, is also found in the present study. With a plane wave incident on the grating, geometrical relationships between the incident wave vector and the grating surfaces have interesting consequences.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Near- to far-field transformation in the aperiodic Fourier modal method

Ronald Rook, Maxim Pisarenco, and Irwan D. Setija
Appl. Opt. 52(28) 6962-6968 (2013)

Theory of the Echelette Grating. II*

John H. Rohrbaugh and Robert D. Hatcher
J. Opt. Soc. Am. 48(10) 704-709 (1958)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (22)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription