Abstract

In this work, we investigated the generation of particles during pure laser and plasma-assisted laser ablation of titanium. Experiments were performed using a NIR picosecond laser at a wavelength of 1030 nm and a pulse duration of 8 ps. For plasma-assisted ablation, an atmospheric pressure dielectric barrier discharge plasma was applied where the process gas was argon. Quantitative particle distributions at sizes from 10 nm to 10 μm were determined. In addition, we evaluated the amount of ablated material via laser scanning microscopy. The ablated volume was significantly increased by a factor of 2 to 3 in the case of plasma-assisted ablation, depending on the applied laser dose. It is shown that the increase in particle volume and number of particles was lower than the ablated volume. However, when applying plasma simultaneously, the generation of small nanoparticles increases notably by a factor of up to 6.63 at a laser dose of 0.7  kJ/mm2 for particles with a mean diameter of 10 nm. The results suggest that even smaller particles than measurable are generated. Hence, plasma-assisted laser ablation could enhance the process efficiency, reduce the particle agglomeration, and give rise to an increase in generation of nanoparticles at the same time.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-temperature atmospheric pressure argon plasma treatment and hybrid laser-plasma ablation of barite crown and heavy flint glass

Christoph Gerhard, Sophie Roux, Stephan Brückner, Stephan Wieneke, and Wolfgang Viöl
Appl. Opt. 51(17) 3847-3852 (2012)

Micro- and nanoparticle generation during nanosecond laser ablation: correlation between mass and optical emissions

Santiago Palanco, Salvatore Marino, M. Gabás, Shanti Bijani, Luis Ayala, and José R. Ramos-Barrado
Opt. Express 22(4) 3991-3999 (2014)

Decomposition of ethane molecules at atmospheric pressure using metal assisted laser induced plasma

M. Maleki, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, Z. Ghorbani, and S. Kiani
J. Opt. Soc. Am. B 32(4) 493-505 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. Gerhard, S. Roux, S. Brueckner, S. Wieneke, and W. Viöl, “Low-temperature atmospheric pressure argon plasma treatment and hybrid laser-plasma ablation of barite crown and heavy flint glass,” Appl. Opt. 51, 3847–3852 (2012).
    [Crossref]
  2. C. Gerhard, S. Roux, F. Peters, S. Brückner, S. Wieneke, and W. Viöl, “Hybrid laser ablation of Al2O3 applying simultaneous argon plasma treatment at atmospheric pressure,” J. Ceram. Sci. Technol. 4, 19–24 (2013).
    [Crossref]
  3. C. Gerhard, S. Roux, S. Brueckner, S. Wieneke, and W. Viöl, “Atmospheric pressure argon plasma-assisted enhancement of laser ablation of aluminium,” Appl. Phys. A 108, 107–112 (2012).
    [Crossref]
  4. C. Leyens and M. Peters, Titanium and Titanium Alloys (Wiley, 2003).
  5. M. Erdogan, B. Oktem, H. Kalaycioglu, S. Yavas, P. K. Mukhopadyay, K. Eken, K. Özgören, Y. Aykac, U. H. Tazebay, and Ö. Ilday, “Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers,” Opt. Express 19, 10986–10996 (2011).
    [Crossref]
  6. A. Y. Fasasi, S. Mwenifumbo, N. Rahbar, J. Chen, M. Li, A. C. Beye, C. B. Arnold, and W. O. Soboyejo, “Nano-second UV laser processed micro-grooves on Ti6Al4 V for biomedical applications,” Mater. Sci. Eng., C 29, 5–13 (2009).
    [Crossref]
  7. C. N. Elias, J. H. C. Lima, R. Valivev, and M. A. Meyers, “Biomedical applications of titanium and its alloys,” JOM-J. Miner. Met. Mater. Soc. 60, 46–49 (2008).
    [Crossref]
  8. M. Long and H. J. Rack, “Titanium alloys in total joint replacement—a materials science perspective,” Biomaterials 19, 1621–1639 (1998).
    [Crossref]
  9. W. Waidelich, ed., Laser in der Technik/Laser in Engineering (Springer, 1992).
  10. H. W. Bergmann and R. Kupfer, “Werkstoffkundliche Aspekte des Laserstrahlschneidens von Blechwerkstoffen mit einem Nd: YAG-Laser,” in Laser in der Technik/Laser in Engineering, W. Waldenich, ed. (Springer, 1992), p. 401.
  11. V. Tangwarodomnukun, P. Likhitangsuwat, O. Tevinpibanphan, and C. Dumkum, “Laser ablation of titanium alloy under a thin and flowing water layer,” Int. J. Mach. Tools Manuf. 89, 14–28 (2015).
    [Crossref]
  12. A. Stephen, “Mechanisms and applications of laser chemical machining,” Phys. Procedia 12, 261–267 (2011).
    [Crossref]
  13. A. Ionin, S. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Y. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10, 56004 (2013).
    [Crossref]
  14. H. Li, X.-F. Li, C.-Y. Zhang, S.-L. Tie, and S. Lan, “Narrow titanium oxide nanowires induced by femtosecond laser pulses on a titanium surface,” Appl. Surf. Sci. 396, 221–225 (2016).
    [Crossref]
  15. A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253, 7272–7280 (2007).
    [Crossref]
  16. M. Trtica, D. Batani, R. Redaelli, J. Limpouch, V. Kmetik, J. Ciganovic, J. Stasic, B. Gakovic, and M. Momcilovic, “Titanium surface modification using femtosecond laser with 1013–1015 W/cm2 intensity in vacuum,” Laser Part. Beams 31, 29–36 (2013).
    [Crossref]
  17. E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface,” J. Exp. Theor. Phys. Lett. 90, 107–110 (2009).
    [Crossref]
  18. A. Abdolvand, S. Z. Khan, Y. Yuan, P. L. Crouse, M. J. J. Schmidt, and M. Sharp, “Generation of titanium-oxide nanoparticles in liquid using a high-power, high-brightness continuous-wave fiber laser,” Appl. Phys. A 91, 365–368 (2008).
    [Crossref]
  19. J. S. Golightly and A. W. Castleman, “Analysis of titanium nanoparticles created by laser irradiation under liquid environments,” J. Phys. Chem. B 110, 19979–19984 (2006).
    [Crossref]
  20. P.-S. Liu, W.-P. Cai, L.-X. Wan, M.-D. Shi, X.-D. Luo, and W.-P. Jing, “Fabrication and characteristics of rutile TiO2 nanoparticles induced by laser ablation,” Trans. Nonferrous Met. Soc. China 19, 737–747 (2009).
    [Crossref]
  21. N. G. Semaltianos, S. Logothetidis, N. Frangis, I. Tsiaoussis, W. Perrie, G. Dearden, and K. G. Watkins, “Laser ablation in water: a route to synthesize nanoparticles of titanium monoxide. A route to synthesize nanoparticles of titanium monoxide,” Chem. Phys. Lett. 496, 113–116 (2010).
    [Crossref]
  22. M. Boutinguiza, J. del Val, A. Riveiro, F. Lusguiños, F. Quintero, R. Comesaña, and J. Pou, “Synthesis of titanium oxide nanoparticles by ytterbium fiber laser ablation,” Phys. Procedia 41, 787–793 (2013).
    [Crossref]
  23. A. Hamad, L. Li, and Z. Liu, “A comparison of the characteristics of nanosecond, picosecond and femtosecond lasers generated Ag, TiO2 and Au nanoparticles in deionised water,” Appl. Phys. A 120, 1247–1260 (2015).
    [Crossref]
  24. E. Giorgetti, M. Muniz Miranda, S. Caporali, P. Canton, P. Marsili, C. Vergari, and F. Giammanco, “TiO2 nanoparticles obtained by laser ablation in water: influence of pulse energy and duration on the crystalline phase,” J. Alloys Compd. 643, S75–S79 (2015).
    [Crossref]
  25. D. Sapkota, Y. Li, O. R. Musaev, J. M. Wrobel, and M. B. Kruger, “Effect of electric fields on tin nanoparticles prepared by laser ablation in water,” J. Laser Appl. 29, 12002 (2017).
    [Crossref]
  26. J. Ferin, G. Oberdorster, and D. P. Penney, “Pulmonary retention of ultrafine and fine particles in rats,” Am. J. Respir. Cell Mol. Biol. 6, 535–542 (1992).
    [Crossref]
  27. G. Oberdoerster, “Pulmonary effects of inhaled ultrafine particles,” Int. Arch. Occup. Environ. Health 74, 1–8 (2000).
  28. D. B. Warheit, T. R. Webb, K. L. Reed, S. Frerichs, and C. M. Sayes, “Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties,” Toxicology 230, 90–104 (2007).
    [Crossref]
  29. C. Buzea, I. I. Pacheco, and K. Robbie, “Nanomaterials and nanoparticles: sources and toxicity,” Biointerphases 2, MR17–MR71 (2007).
    [Crossref]
  30. F. Afaq, P. Abidi, R. Martin, and Q. Rahman, “Cytotoxicity, pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide,” J. Appl. Toxicol. 18, 307–312 (1998).
    [Crossref]
  31. C. Gerhard, T. Weihs, A. Luca, S. Wieneke, and W. Viöl, “Polishing of optical media by dielectric barrier discharge inert gas plasma at atmospheric pressure,” J. Eur. Opt. Soc. 8, 13081 (2013).
    [Crossref]
  32. J. Hoffmeister, S. Brückner, C. Gerhard, S. Wieneke, and W. Viöl, “Impact of the thermal lens effect in atmospheric pressure DBD-plasma columns on coaxially guided laser beams,” Plasma Sources Sci. Technol. 23, 064008 (2014).
    [Crossref]
  33. H. Zhao, X. Liu, and S. D. Tse, “Control of nanoparticle size and agglomeration through electric-field-enhanced flame synthesis,” J. Nanopart. Res. 10, 907–923 (2008).
    [Crossref]
  34. A. A. Serkov, E. V. Barmina, G. A. Shafeev, and V. V. Voronov, “Laser ablation of titanium in liquid in external electric field,” Appl. Surf. Sci. 348, 16–21 (2015).
    [Crossref]
  35. B. M. Obradović, S. S. Ivković, and M. M. Kuraica, “Spectroscopic measurement of electric field in dielectric barrier discharge in helium,” Appl. Phys. Lett. 92, 191501 (2008).
    [Crossref]
  36. L. Chen, T. Mashimo, E. Omurzak, H. Okudera, C. Iwamoto, and A. Yoshiasa, “Pure tetragonal ZrO2 nanoparticles synthesized by pulsed plasma in liquid,” J. Phys. Chem. C 115, 9370–9375 (2011).
    [Crossref]
  37. C. Richmonds and R. M. Sankaran, “Plasma-liquid electrochemistry: rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations,” Appl. Phys. Lett. 93, 131501 (2008).
    [Crossref]
  38. J. Patel, L. Němcová, P. Maguire, W. G. Graham, and D. Mariotti, “Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry,” Nanotechnology 24, 245604 (2013).
    [Crossref]

2017 (1)

D. Sapkota, Y. Li, O. R. Musaev, J. M. Wrobel, and M. B. Kruger, “Effect of electric fields on tin nanoparticles prepared by laser ablation in water,” J. Laser Appl. 29, 12002 (2017).
[Crossref]

2016 (1)

H. Li, X.-F. Li, C.-Y. Zhang, S.-L. Tie, and S. Lan, “Narrow titanium oxide nanowires induced by femtosecond laser pulses on a titanium surface,” Appl. Surf. Sci. 396, 221–225 (2016).
[Crossref]

2015 (4)

A. Hamad, L. Li, and Z. Liu, “A comparison of the characteristics of nanosecond, picosecond and femtosecond lasers generated Ag, TiO2 and Au nanoparticles in deionised water,” Appl. Phys. A 120, 1247–1260 (2015).
[Crossref]

E. Giorgetti, M. Muniz Miranda, S. Caporali, P. Canton, P. Marsili, C. Vergari, and F. Giammanco, “TiO2 nanoparticles obtained by laser ablation in water: influence of pulse energy and duration on the crystalline phase,” J. Alloys Compd. 643, S75–S79 (2015).
[Crossref]

V. Tangwarodomnukun, P. Likhitangsuwat, O. Tevinpibanphan, and C. Dumkum, “Laser ablation of titanium alloy under a thin and flowing water layer,” Int. J. Mach. Tools Manuf. 89, 14–28 (2015).
[Crossref]

A. A. Serkov, E. V. Barmina, G. A. Shafeev, and V. V. Voronov, “Laser ablation of titanium in liquid in external electric field,” Appl. Surf. Sci. 348, 16–21 (2015).
[Crossref]

2014 (1)

J. Hoffmeister, S. Brückner, C. Gerhard, S. Wieneke, and W. Viöl, “Impact of the thermal lens effect in atmospheric pressure DBD-plasma columns on coaxially guided laser beams,” Plasma Sources Sci. Technol. 23, 064008 (2014).
[Crossref]

2013 (6)

C. Gerhard, T. Weihs, A. Luca, S. Wieneke, and W. Viöl, “Polishing of optical media by dielectric barrier discharge inert gas plasma at atmospheric pressure,” J. Eur. Opt. Soc. 8, 13081 (2013).
[Crossref]

J. Patel, L. Němcová, P. Maguire, W. G. Graham, and D. Mariotti, “Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry,” Nanotechnology 24, 245604 (2013).
[Crossref]

C. Gerhard, S. Roux, F. Peters, S. Brückner, S. Wieneke, and W. Viöl, “Hybrid laser ablation of Al2O3 applying simultaneous argon plasma treatment at atmospheric pressure,” J. Ceram. Sci. Technol. 4, 19–24 (2013).
[Crossref]

M. Trtica, D. Batani, R. Redaelli, J. Limpouch, V. Kmetik, J. Ciganovic, J. Stasic, B. Gakovic, and M. Momcilovic, “Titanium surface modification using femtosecond laser with 1013–1015 W/cm2 intensity in vacuum,” Laser Part. Beams 31, 29–36 (2013).
[Crossref]

M. Boutinguiza, J. del Val, A. Riveiro, F. Lusguiños, F. Quintero, R. Comesaña, and J. Pou, “Synthesis of titanium oxide nanoparticles by ytterbium fiber laser ablation,” Phys. Procedia 41, 787–793 (2013).
[Crossref]

A. Ionin, S. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Y. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10, 56004 (2013).
[Crossref]

2012 (2)

C. Gerhard, S. Roux, S. Brueckner, S. Wieneke, and W. Viöl, “Atmospheric pressure argon plasma-assisted enhancement of laser ablation of aluminium,” Appl. Phys. A 108, 107–112 (2012).
[Crossref]

C. Gerhard, S. Roux, S. Brueckner, S. Wieneke, and W. Viöl, “Low-temperature atmospheric pressure argon plasma treatment and hybrid laser-plasma ablation of barite crown and heavy flint glass,” Appl. Opt. 51, 3847–3852 (2012).
[Crossref]

2011 (3)

M. Erdogan, B. Oktem, H. Kalaycioglu, S. Yavas, P. K. Mukhopadyay, K. Eken, K. Özgören, Y. Aykac, U. H. Tazebay, and Ö. Ilday, “Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers,” Opt. Express 19, 10986–10996 (2011).
[Crossref]

L. Chen, T. Mashimo, E. Omurzak, H. Okudera, C. Iwamoto, and A. Yoshiasa, “Pure tetragonal ZrO2 nanoparticles synthesized by pulsed plasma in liquid,” J. Phys. Chem. C 115, 9370–9375 (2011).
[Crossref]

A. Stephen, “Mechanisms and applications of laser chemical machining,” Phys. Procedia 12, 261–267 (2011).
[Crossref]

2010 (1)

N. G. Semaltianos, S. Logothetidis, N. Frangis, I. Tsiaoussis, W. Perrie, G. Dearden, and K. G. Watkins, “Laser ablation in water: a route to synthesize nanoparticles of titanium monoxide. A route to synthesize nanoparticles of titanium monoxide,” Chem. Phys. Lett. 496, 113–116 (2010).
[Crossref]

2009 (3)

P.-S. Liu, W.-P. Cai, L.-X. Wan, M.-D. Shi, X.-D. Luo, and W.-P. Jing, “Fabrication and characteristics of rutile TiO2 nanoparticles induced by laser ablation,” Trans. Nonferrous Met. Soc. China 19, 737–747 (2009).
[Crossref]

A. Y. Fasasi, S. Mwenifumbo, N. Rahbar, J. Chen, M. Li, A. C. Beye, C. B. Arnold, and W. O. Soboyejo, “Nano-second UV laser processed micro-grooves on Ti6Al4 V for biomedical applications,” Mater. Sci. Eng., C 29, 5–13 (2009).
[Crossref]

E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface,” J. Exp. Theor. Phys. Lett. 90, 107–110 (2009).
[Crossref]

2008 (5)

A. Abdolvand, S. Z. Khan, Y. Yuan, P. L. Crouse, M. J. J. Schmidt, and M. Sharp, “Generation of titanium-oxide nanoparticles in liquid using a high-power, high-brightness continuous-wave fiber laser,” Appl. Phys. A 91, 365–368 (2008).
[Crossref]

C. N. Elias, J. H. C. Lima, R. Valivev, and M. A. Meyers, “Biomedical applications of titanium and its alloys,” JOM-J. Miner. Met. Mater. Soc. 60, 46–49 (2008).
[Crossref]

C. Richmonds and R. M. Sankaran, “Plasma-liquid electrochemistry: rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations,” Appl. Phys. Lett. 93, 131501 (2008).
[Crossref]

B. M. Obradović, S. S. Ivković, and M. M. Kuraica, “Spectroscopic measurement of electric field in dielectric barrier discharge in helium,” Appl. Phys. Lett. 92, 191501 (2008).
[Crossref]

H. Zhao, X. Liu, and S. D. Tse, “Control of nanoparticle size and agglomeration through electric-field-enhanced flame synthesis,” J. Nanopart. Res. 10, 907–923 (2008).
[Crossref]

2007 (3)

D. B. Warheit, T. R. Webb, K. L. Reed, S. Frerichs, and C. M. Sayes, “Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties,” Toxicology 230, 90–104 (2007).
[Crossref]

C. Buzea, I. I. Pacheco, and K. Robbie, “Nanomaterials and nanoparticles: sources and toxicity,” Biointerphases 2, MR17–MR71 (2007).
[Crossref]

A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253, 7272–7280 (2007).
[Crossref]

2006 (1)

J. S. Golightly and A. W. Castleman, “Analysis of titanium nanoparticles created by laser irradiation under liquid environments,” J. Phys. Chem. B 110, 19979–19984 (2006).
[Crossref]

2000 (1)

G. Oberdoerster, “Pulmonary effects of inhaled ultrafine particles,” Int. Arch. Occup. Environ. Health 74, 1–8 (2000).

1998 (2)

F. Afaq, P. Abidi, R. Martin, and Q. Rahman, “Cytotoxicity, pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide,” J. Appl. Toxicol. 18, 307–312 (1998).
[Crossref]

M. Long and H. J. Rack, “Titanium alloys in total joint replacement—a materials science perspective,” Biomaterials 19, 1621–1639 (1998).
[Crossref]

1992 (1)

J. Ferin, G. Oberdorster, and D. P. Penney, “Pulmonary retention of ultrafine and fine particles in rats,” Am. J. Respir. Cell Mol. Biol. 6, 535–542 (1992).
[Crossref]

Abdolvand, A.

A. Abdolvand, S. Z. Khan, Y. Yuan, P. L. Crouse, M. J. J. Schmidt, and M. Sharp, “Generation of titanium-oxide nanoparticles in liquid using a high-power, high-brightness continuous-wave fiber laser,” Appl. Phys. A 91, 365–368 (2008).
[Crossref]

Abidi, P.

F. Afaq, P. Abidi, R. Martin, and Q. Rahman, “Cytotoxicity, pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide,” J. Appl. Toxicol. 18, 307–312 (1998).
[Crossref]

Afaq, F.

F. Afaq, P. Abidi, R. Martin, and Q. Rahman, “Cytotoxicity, pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide,” J. Appl. Toxicol. 18, 307–312 (1998).
[Crossref]

Arnold, C. B.

A. Y. Fasasi, S. Mwenifumbo, N. Rahbar, J. Chen, M. Li, A. C. Beye, C. B. Arnold, and W. O. Soboyejo, “Nano-second UV laser processed micro-grooves on Ti6Al4 V for biomedical applications,” Mater. Sci. Eng., C 29, 5–13 (2009).
[Crossref]

Aykac, Y.

Barmina, E. V.

A. A. Serkov, E. V. Barmina, G. A. Shafeev, and V. V. Voronov, “Laser ablation of titanium in liquid in external electric field,” Appl. Surf. Sci. 348, 16–21 (2015).
[Crossref]

Batani, D.

M. Trtica, D. Batani, R. Redaelli, J. Limpouch, V. Kmetik, J. Ciganovic, J. Stasic, B. Gakovic, and M. Momcilovic, “Titanium surface modification using femtosecond laser with 1013–1015 W/cm2 intensity in vacuum,” Laser Part. Beams 31, 29–36 (2013).
[Crossref]

Bergmann, H. W.

H. W. Bergmann and R. Kupfer, “Werkstoffkundliche Aspekte des Laserstrahlschneidens von Blechwerkstoffen mit einem Nd: YAG-Laser,” in Laser in der Technik/Laser in Engineering, W. Waldenich, ed. (Springer, 1992), p. 401.

Beye, A. C.

A. Y. Fasasi, S. Mwenifumbo, N. Rahbar, J. Chen, M. Li, A. C. Beye, C. B. Arnold, and W. O. Soboyejo, “Nano-second UV laser processed micro-grooves on Ti6Al4 V for biomedical applications,” Mater. Sci. Eng., C 29, 5–13 (2009).
[Crossref]

Boutinguiza, M.

M. Boutinguiza, J. del Val, A. Riveiro, F. Lusguiños, F. Quintero, R. Comesaña, and J. Pou, “Synthesis of titanium oxide nanoparticles by ytterbium fiber laser ablation,” Phys. Procedia 41, 787–793 (2013).
[Crossref]

Brückner, S.

J. Hoffmeister, S. Brückner, C. Gerhard, S. Wieneke, and W. Viöl, “Impact of the thermal lens effect in atmospheric pressure DBD-plasma columns on coaxially guided laser beams,” Plasma Sources Sci. Technol. 23, 064008 (2014).
[Crossref]

C. Gerhard, S. Roux, F. Peters, S. Brückner, S. Wieneke, and W. Viöl, “Hybrid laser ablation of Al2O3 applying simultaneous argon plasma treatment at atmospheric pressure,” J. Ceram. Sci. Technol. 4, 19–24 (2013).
[Crossref]

Brueckner, S.

C. Gerhard, S. Roux, S. Brueckner, S. Wieneke, and W. Viöl, “Atmospheric pressure argon plasma-assisted enhancement of laser ablation of aluminium,” Appl. Phys. A 108, 107–112 (2012).
[Crossref]

C. Gerhard, S. Roux, S. Brueckner, S. Wieneke, and W. Viöl, “Low-temperature atmospheric pressure argon plasma treatment and hybrid laser-plasma ablation of barite crown and heavy flint glass,” Appl. Opt. 51, 3847–3852 (2012).
[Crossref]

Buzea, C.

C. Buzea, I. I. Pacheco, and K. Robbie, “Nanomaterials and nanoparticles: sources and toxicity,” Biointerphases 2, MR17–MR71 (2007).
[Crossref]

Cai, W.-P.

P.-S. Liu, W.-P. Cai, L.-X. Wan, M.-D. Shi, X.-D. Luo, and W.-P. Jing, “Fabrication and characteristics of rutile TiO2 nanoparticles induced by laser ablation,” Trans. Nonferrous Met. Soc. China 19, 737–747 (2009).
[Crossref]

Canton, P.

E. Giorgetti, M. Muniz Miranda, S. Caporali, P. Canton, P. Marsili, C. Vergari, and F. Giammanco, “TiO2 nanoparticles obtained by laser ablation in water: influence of pulse energy and duration on the crystalline phase,” J. Alloys Compd. 643, S75–S79 (2015).
[Crossref]

Caporali, S.

E. Giorgetti, M. Muniz Miranda, S. Caporali, P. Canton, P. Marsili, C. Vergari, and F. Giammanco, “TiO2 nanoparticles obtained by laser ablation in water: influence of pulse energy and duration on the crystalline phase,” J. Alloys Compd. 643, S75–S79 (2015).
[Crossref]

Castleman, A. W.

J. S. Golightly and A. W. Castleman, “Analysis of titanium nanoparticles created by laser irradiation under liquid environments,” J. Phys. Chem. B 110, 19979–19984 (2006).
[Crossref]

Chen, J.

A. Y. Fasasi, S. Mwenifumbo, N. Rahbar, J. Chen, M. Li, A. C. Beye, C. B. Arnold, and W. O. Soboyejo, “Nano-second UV laser processed micro-grooves on Ti6Al4 V for biomedical applications,” Mater. Sci. Eng., C 29, 5–13 (2009).
[Crossref]

Chen, L.

L. Chen, T. Mashimo, E. Omurzak, H. Okudera, C. Iwamoto, and A. Yoshiasa, “Pure tetragonal ZrO2 nanoparticles synthesized by pulsed plasma in liquid,” J. Phys. Chem. C 115, 9370–9375 (2011).
[Crossref]

Ciganovic, J.

M. Trtica, D. Batani, R. Redaelli, J. Limpouch, V. Kmetik, J. Ciganovic, J. Stasic, B. Gakovic, and M. Momcilovic, “Titanium surface modification using femtosecond laser with 1013–1015 W/cm2 intensity in vacuum,” Laser Part. Beams 31, 29–36 (2013).
[Crossref]

Comesaña, R.

M. Boutinguiza, J. del Val, A. Riveiro, F. Lusguiños, F. Quintero, R. Comesaña, and J. Pou, “Synthesis of titanium oxide nanoparticles by ytterbium fiber laser ablation,” Phys. Procedia 41, 787–793 (2013).
[Crossref]

Crouse, P. L.

A. Abdolvand, S. Z. Khan, Y. Yuan, P. L. Crouse, M. J. J. Schmidt, and M. Sharp, “Generation of titanium-oxide nanoparticles in liquid using a high-power, high-brightness continuous-wave fiber laser,” Appl. Phys. A 91, 365–368 (2008).
[Crossref]

Dearden, G.

N. G. Semaltianos, S. Logothetidis, N. Frangis, I. Tsiaoussis, W. Perrie, G. Dearden, and K. G. Watkins, “Laser ablation in water: a route to synthesize nanoparticles of titanium monoxide. A route to synthesize nanoparticles of titanium monoxide,” Chem. Phys. Lett. 496, 113–116 (2010).
[Crossref]

del Val, J.

M. Boutinguiza, J. del Val, A. Riveiro, F. Lusguiños, F. Quintero, R. Comesaña, and J. Pou, “Synthesis of titanium oxide nanoparticles by ytterbium fiber laser ablation,” Phys. Procedia 41, 787–793 (2013).
[Crossref]

Dumkum, C.

V. Tangwarodomnukun, P. Likhitangsuwat, O. Tevinpibanphan, and C. Dumkum, “Laser ablation of titanium alloy under a thin and flowing water layer,” Int. J. Mach. Tools Manuf. 89, 14–28 (2015).
[Crossref]

Eken, K.

Elias, C. N.

C. N. Elias, J. H. C. Lima, R. Valivev, and M. A. Meyers, “Biomedical applications of titanium and its alloys,” JOM-J. Miner. Met. Mater. Soc. 60, 46–49 (2008).
[Crossref]

Emel’yanov, V. I.

E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface,” J. Exp. Theor. Phys. Lett. 90, 107–110 (2009).
[Crossref]

Erdogan, M.

Fasasi, A. Y.

A. Y. Fasasi, S. Mwenifumbo, N. Rahbar, J. Chen, M. Li, A. C. Beye, C. B. Arnold, and W. O. Soboyejo, “Nano-second UV laser processed micro-grooves on Ti6Al4 V for biomedical applications,” Mater. Sci. Eng., C 29, 5–13 (2009).
[Crossref]

Ferin, J.

J. Ferin, G. Oberdorster, and D. P. Penney, “Pulmonary retention of ultrafine and fine particles in rats,” Am. J. Respir. Cell Mol. Biol. 6, 535–542 (1992).
[Crossref]

Frangis, N.

N. G. Semaltianos, S. Logothetidis, N. Frangis, I. Tsiaoussis, W. Perrie, G. Dearden, and K. G. Watkins, “Laser ablation in water: a route to synthesize nanoparticles of titanium monoxide. A route to synthesize nanoparticles of titanium monoxide,” Chem. Phys. Lett. 496, 113–116 (2010).
[Crossref]

Frerichs, S.

D. B. Warheit, T. R. Webb, K. L. Reed, S. Frerichs, and C. M. Sayes, “Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties,” Toxicology 230, 90–104 (2007).
[Crossref]

Gakovic, B.

M. Trtica, D. Batani, R. Redaelli, J. Limpouch, V. Kmetik, J. Ciganovic, J. Stasic, B. Gakovic, and M. Momcilovic, “Titanium surface modification using femtosecond laser with 1013–1015 W/cm2 intensity in vacuum,” Laser Part. Beams 31, 29–36 (2013).
[Crossref]

Gerhard, C.

J. Hoffmeister, S. Brückner, C. Gerhard, S. Wieneke, and W. Viöl, “Impact of the thermal lens effect in atmospheric pressure DBD-plasma columns on coaxially guided laser beams,” Plasma Sources Sci. Technol. 23, 064008 (2014).
[Crossref]

C. Gerhard, T. Weihs, A. Luca, S. Wieneke, and W. Viöl, “Polishing of optical media by dielectric barrier discharge inert gas plasma at atmospheric pressure,” J. Eur. Opt. Soc. 8, 13081 (2013).
[Crossref]

C. Gerhard, S. Roux, F. Peters, S. Brückner, S. Wieneke, and W. Viöl, “Hybrid laser ablation of Al2O3 applying simultaneous argon plasma treatment at atmospheric pressure,” J. Ceram. Sci. Technol. 4, 19–24 (2013).
[Crossref]

C. Gerhard, S. Roux, S. Brueckner, S. Wieneke, and W. Viöl, “Atmospheric pressure argon plasma-assisted enhancement of laser ablation of aluminium,” Appl. Phys. A 108, 107–112 (2012).
[Crossref]

C. Gerhard, S. Roux, S. Brueckner, S. Wieneke, and W. Viöl, “Low-temperature atmospheric pressure argon plasma treatment and hybrid laser-plasma ablation of barite crown and heavy flint glass,” Appl. Opt. 51, 3847–3852 (2012).
[Crossref]

Giammanco, F.

E. Giorgetti, M. Muniz Miranda, S. Caporali, P. Canton, P. Marsili, C. Vergari, and F. Giammanco, “TiO2 nanoparticles obtained by laser ablation in water: influence of pulse energy and duration on the crystalline phase,” J. Alloys Compd. 643, S75–S79 (2015).
[Crossref]

Giorgetti, E.

E. Giorgetti, M. Muniz Miranda, S. Caporali, P. Canton, P. Marsili, C. Vergari, and F. Giammanco, “TiO2 nanoparticles obtained by laser ablation in water: influence of pulse energy and duration on the crystalline phase,” J. Alloys Compd. 643, S75–S79 (2015).
[Crossref]

Golightly, J. S.

J. S. Golightly and A. W. Castleman, “Analysis of titanium nanoparticles created by laser irradiation under liquid environments,” J. Phys. Chem. B 110, 19979–19984 (2006).
[Crossref]

Golosov, E. V.

A. Ionin, S. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Y. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10, 56004 (2013).
[Crossref]

E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface,” J. Exp. Theor. Phys. Lett. 90, 107–110 (2009).
[Crossref]

Graham, W. G.

J. Patel, L. Němcová, P. Maguire, W. G. Graham, and D. Mariotti, “Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry,” Nanotechnology 24, 245604 (2013).
[Crossref]

Guo, C.

A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253, 7272–7280 (2007).
[Crossref]

Hamad, A.

A. Hamad, L. Li, and Z. Liu, “A comparison of the characteristics of nanosecond, picosecond and femtosecond lasers generated Ag, TiO2 and Au nanoparticles in deionised water,” Appl. Phys. A 120, 1247–1260 (2015).
[Crossref]

Hoffmeister, J.

J. Hoffmeister, S. Brückner, C. Gerhard, S. Wieneke, and W. Viöl, “Impact of the thermal lens effect in atmospheric pressure DBD-plasma columns on coaxially guided laser beams,” Plasma Sources Sci. Technol. 23, 064008 (2014).
[Crossref]

Ilday, Ö.

Ionin, A.

A. Ionin, S. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Y. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10, 56004 (2013).
[Crossref]

Ionin, A. A.

E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface,” J. Exp. Theor. Phys. Lett. 90, 107–110 (2009).
[Crossref]

Ivkovic, S. S.

B. M. Obradović, S. S. Ivković, and M. M. Kuraica, “Spectroscopic measurement of electric field in dielectric barrier discharge in helium,” Appl. Phys. Lett. 92, 191501 (2008).
[Crossref]

Iwamoto, C.

L. Chen, T. Mashimo, E. Omurzak, H. Okudera, C. Iwamoto, and A. Yoshiasa, “Pure tetragonal ZrO2 nanoparticles synthesized by pulsed plasma in liquid,” J. Phys. Chem. C 115, 9370–9375 (2011).
[Crossref]

Jing, W.-P.

P.-S. Liu, W.-P. Cai, L.-X. Wan, M.-D. Shi, X.-D. Luo, and W.-P. Jing, “Fabrication and characteristics of rutile TiO2 nanoparticles induced by laser ablation,” Trans. Nonferrous Met. Soc. China 19, 737–747 (2009).
[Crossref]

Kalaycioglu, H.

Khan, S. Z.

A. Abdolvand, S. Z. Khan, Y. Yuan, P. L. Crouse, M. J. J. Schmidt, and M. Sharp, “Generation of titanium-oxide nanoparticles in liquid using a high-power, high-brightness continuous-wave fiber laser,” Appl. Phys. A 91, 365–368 (2008).
[Crossref]

Kmetik, V.

M. Trtica, D. Batani, R. Redaelli, J. Limpouch, V. Kmetik, J. Ciganovic, J. Stasic, B. Gakovic, and M. Momcilovic, “Titanium surface modification using femtosecond laser with 1013–1015 W/cm2 intensity in vacuum,” Laser Part. Beams 31, 29–36 (2013).
[Crossref]

Kolobov, Y. R.

A. Ionin, S. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Y. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10, 56004 (2013).
[Crossref]

E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface,” J. Exp. Theor. Phys. Lett. 90, 107–110 (2009).
[Crossref]

Kruger, M. B.

D. Sapkota, Y. Li, O. R. Musaev, J. M. Wrobel, and M. B. Kruger, “Effect of electric fields on tin nanoparticles prepared by laser ablation in water,” J. Laser Appl. 29, 12002 (2017).
[Crossref]

Kudryashov, S.

A. Ionin, S. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Y. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10, 56004 (2013).
[Crossref]

Kudryashov, S. I.

E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface,” J. Exp. Theor. Phys. Lett. 90, 107–110 (2009).
[Crossref]

Kupfer, R.

H. W. Bergmann and R. Kupfer, “Werkstoffkundliche Aspekte des Laserstrahlschneidens von Blechwerkstoffen mit einem Nd: YAG-Laser,” in Laser in der Technik/Laser in Engineering, W. Waldenich, ed. (Springer, 1992), p. 401.

Kuraica, M. M.

B. M. Obradović, S. S. Ivković, and M. M. Kuraica, “Spectroscopic measurement of electric field in dielectric barrier discharge in helium,” Appl. Phys. Lett. 92, 191501 (2008).
[Crossref]

Lan, S.

H. Li, X.-F. Li, C.-Y. Zhang, S.-L. Tie, and S. Lan, “Narrow titanium oxide nanowires induced by femtosecond laser pulses on a titanium surface,” Appl. Surf. Sci. 396, 221–225 (2016).
[Crossref]

Leyens, C.

C. Leyens and M. Peters, Titanium and Titanium Alloys (Wiley, 2003).

Li, H.

H. Li, X.-F. Li, C.-Y. Zhang, S.-L. Tie, and S. Lan, “Narrow titanium oxide nanowires induced by femtosecond laser pulses on a titanium surface,” Appl. Surf. Sci. 396, 221–225 (2016).
[Crossref]

Li, L.

A. Hamad, L. Li, and Z. Liu, “A comparison of the characteristics of nanosecond, picosecond and femtosecond lasers generated Ag, TiO2 and Au nanoparticles in deionised water,” Appl. Phys. A 120, 1247–1260 (2015).
[Crossref]

Li, M.

A. Y. Fasasi, S. Mwenifumbo, N. Rahbar, J. Chen, M. Li, A. C. Beye, C. B. Arnold, and W. O. Soboyejo, “Nano-second UV laser processed micro-grooves on Ti6Al4 V for biomedical applications,” Mater. Sci. Eng., C 29, 5–13 (2009).
[Crossref]

Li, X.-F.

H. Li, X.-F. Li, C.-Y. Zhang, S.-L. Tie, and S. Lan, “Narrow titanium oxide nanowires induced by femtosecond laser pulses on a titanium surface,” Appl. Surf. Sci. 396, 221–225 (2016).
[Crossref]

Li, Y.

D. Sapkota, Y. Li, O. R. Musaev, J. M. Wrobel, and M. B. Kruger, “Effect of electric fields on tin nanoparticles prepared by laser ablation in water,” J. Laser Appl. 29, 12002 (2017).
[Crossref]

Ligachev, A. E.

A. Ionin, S. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Y. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10, 56004 (2013).
[Crossref]

E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface,” J. Exp. Theor. Phys. Lett. 90, 107–110 (2009).
[Crossref]

Likhitangsuwat, P.

V. Tangwarodomnukun, P. Likhitangsuwat, O. Tevinpibanphan, and C. Dumkum, “Laser ablation of titanium alloy under a thin and flowing water layer,” Int. J. Mach. Tools Manuf. 89, 14–28 (2015).
[Crossref]

Lima, J. H. C.

C. N. Elias, J. H. C. Lima, R. Valivev, and M. A. Meyers, “Biomedical applications of titanium and its alloys,” JOM-J. Miner. Met. Mater. Soc. 60, 46–49 (2008).
[Crossref]

Limpouch, J.

M. Trtica, D. Batani, R. Redaelli, J. Limpouch, V. Kmetik, J. Ciganovic, J. Stasic, B. Gakovic, and M. Momcilovic, “Titanium surface modification using femtosecond laser with 1013–1015 W/cm2 intensity in vacuum,” Laser Part. Beams 31, 29–36 (2013).
[Crossref]

Liu, P.-S.

P.-S. Liu, W.-P. Cai, L.-X. Wan, M.-D. Shi, X.-D. Luo, and W.-P. Jing, “Fabrication and characteristics of rutile TiO2 nanoparticles induced by laser ablation,” Trans. Nonferrous Met. Soc. China 19, 737–747 (2009).
[Crossref]

Liu, X.

H. Zhao, X. Liu, and S. D. Tse, “Control of nanoparticle size and agglomeration through electric-field-enhanced flame synthesis,” J. Nanopart. Res. 10, 907–923 (2008).
[Crossref]

Liu, Z.

A. Hamad, L. Li, and Z. Liu, “A comparison of the characteristics of nanosecond, picosecond and femtosecond lasers generated Ag, TiO2 and Au nanoparticles in deionised water,” Appl. Phys. A 120, 1247–1260 (2015).
[Crossref]

Logothetidis, S.

N. G. Semaltianos, S. Logothetidis, N. Frangis, I. Tsiaoussis, W. Perrie, G. Dearden, and K. G. Watkins, “Laser ablation in water: a route to synthesize nanoparticles of titanium monoxide. A route to synthesize nanoparticles of titanium monoxide,” Chem. Phys. Lett. 496, 113–116 (2010).
[Crossref]

Long, M.

M. Long and H. J. Rack, “Titanium alloys in total joint replacement—a materials science perspective,” Biomaterials 19, 1621–1639 (1998).
[Crossref]

Luca, A.

C. Gerhard, T. Weihs, A. Luca, S. Wieneke, and W. Viöl, “Polishing of optical media by dielectric barrier discharge inert gas plasma at atmospheric pressure,” J. Eur. Opt. Soc. 8, 13081 (2013).
[Crossref]

Luo, X.-D.

P.-S. Liu, W.-P. Cai, L.-X. Wan, M.-D. Shi, X.-D. Luo, and W.-P. Jing, “Fabrication and characteristics of rutile TiO2 nanoparticles induced by laser ablation,” Trans. Nonferrous Met. Soc. China 19, 737–747 (2009).
[Crossref]

Lusguiños, F.

M. Boutinguiza, J. del Val, A. Riveiro, F. Lusguiños, F. Quintero, R. Comesaña, and J. Pou, “Synthesis of titanium oxide nanoparticles by ytterbium fiber laser ablation,” Phys. Procedia 41, 787–793 (2013).
[Crossref]

Maguire, P.

J. Patel, L. Němcová, P. Maguire, W. G. Graham, and D. Mariotti, “Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry,” Nanotechnology 24, 245604 (2013).
[Crossref]

Makarov, S. V.

A. Ionin, S. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Y. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10, 56004 (2013).
[Crossref]

Mariotti, D.

J. Patel, L. Němcová, P. Maguire, W. G. Graham, and D. Mariotti, “Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry,” Nanotechnology 24, 245604 (2013).
[Crossref]

Marsili, P.

E. Giorgetti, M. Muniz Miranda, S. Caporali, P. Canton, P. Marsili, C. Vergari, and F. Giammanco, “TiO2 nanoparticles obtained by laser ablation in water: influence of pulse energy and duration on the crystalline phase,” J. Alloys Compd. 643, S75–S79 (2015).
[Crossref]

Martin, R.

F. Afaq, P. Abidi, R. Martin, and Q. Rahman, “Cytotoxicity, pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide,” J. Appl. Toxicol. 18, 307–312 (1998).
[Crossref]

Mashimo, T.

L. Chen, T. Mashimo, E. Omurzak, H. Okudera, C. Iwamoto, and A. Yoshiasa, “Pure tetragonal ZrO2 nanoparticles synthesized by pulsed plasma in liquid,” J. Phys. Chem. C 115, 9370–9375 (2011).
[Crossref]

Meyers, M. A.

C. N. Elias, J. H. C. Lima, R. Valivev, and M. A. Meyers, “Biomedical applications of titanium and its alloys,” JOM-J. Miner. Met. Mater. Soc. 60, 46–49 (2008).
[Crossref]

Momcilovic, M.

M. Trtica, D. Batani, R. Redaelli, J. Limpouch, V. Kmetik, J. Ciganovic, J. Stasic, B. Gakovic, and M. Momcilovic, “Titanium surface modification using femtosecond laser with 1013–1015 W/cm2 intensity in vacuum,” Laser Part. Beams 31, 29–36 (2013).
[Crossref]

Mukhopadyay, P. K.

Muniz Miranda, M.

E. Giorgetti, M. Muniz Miranda, S. Caporali, P. Canton, P. Marsili, C. Vergari, and F. Giammanco, “TiO2 nanoparticles obtained by laser ablation in water: influence of pulse energy and duration on the crystalline phase,” J. Alloys Compd. 643, S75–S79 (2015).
[Crossref]

Musaev, O. R.

D. Sapkota, Y. Li, O. R. Musaev, J. M. Wrobel, and M. B. Kruger, “Effect of electric fields on tin nanoparticles prepared by laser ablation in water,” J. Laser Appl. 29, 12002 (2017).
[Crossref]

Mwenifumbo, S.

A. Y. Fasasi, S. Mwenifumbo, N. Rahbar, J. Chen, M. Li, A. C. Beye, C. B. Arnold, and W. O. Soboyejo, “Nano-second UV laser processed micro-grooves on Ti6Al4 V for biomedical applications,” Mater. Sci. Eng., C 29, 5–13 (2009).
[Crossref]

Nemcová, L.

J. Patel, L. Němcová, P. Maguire, W. G. Graham, and D. Mariotti, “Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry,” Nanotechnology 24, 245604 (2013).
[Crossref]

Novoselov, Y. N.

E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface,” J. Exp. Theor. Phys. Lett. 90, 107–110 (2009).
[Crossref]

Oberdoerster, G.

G. Oberdoerster, “Pulmonary effects of inhaled ultrafine particles,” Int. Arch. Occup. Environ. Health 74, 1–8 (2000).

Oberdorster, G.

J. Ferin, G. Oberdorster, and D. P. Penney, “Pulmonary retention of ultrafine and fine particles in rats,” Am. J. Respir. Cell Mol. Biol. 6, 535–542 (1992).
[Crossref]

Obradovic, B. M.

B. M. Obradović, S. S. Ivković, and M. M. Kuraica, “Spectroscopic measurement of electric field in dielectric barrier discharge in helium,” Appl. Phys. Lett. 92, 191501 (2008).
[Crossref]

Oktem, B.

Okudera, H.

L. Chen, T. Mashimo, E. Omurzak, H. Okudera, C. Iwamoto, and A. Yoshiasa, “Pure tetragonal ZrO2 nanoparticles synthesized by pulsed plasma in liquid,” J. Phys. Chem. C 115, 9370–9375 (2011).
[Crossref]

Omurzak, E.

L. Chen, T. Mashimo, E. Omurzak, H. Okudera, C. Iwamoto, and A. Yoshiasa, “Pure tetragonal ZrO2 nanoparticles synthesized by pulsed plasma in liquid,” J. Phys. Chem. C 115, 9370–9375 (2011).
[Crossref]

Özgören, K.

Pacheco, I. I.

C. Buzea, I. I. Pacheco, and K. Robbie, “Nanomaterials and nanoparticles: sources and toxicity,” Biointerphases 2, MR17–MR71 (2007).
[Crossref]

Patel, J.

J. Patel, L. Němcová, P. Maguire, W. G. Graham, and D. Mariotti, “Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry,” Nanotechnology 24, 245604 (2013).
[Crossref]

Penney, D. P.

J. Ferin, G. Oberdorster, and D. P. Penney, “Pulmonary retention of ultrafine and fine particles in rats,” Am. J. Respir. Cell Mol. Biol. 6, 535–542 (1992).
[Crossref]

Perrie, W.

N. G. Semaltianos, S. Logothetidis, N. Frangis, I. Tsiaoussis, W. Perrie, G. Dearden, and K. G. Watkins, “Laser ablation in water: a route to synthesize nanoparticles of titanium monoxide. A route to synthesize nanoparticles of titanium monoxide,” Chem. Phys. Lett. 496, 113–116 (2010).
[Crossref]

Peters, F.

C. Gerhard, S. Roux, F. Peters, S. Brückner, S. Wieneke, and W. Viöl, “Hybrid laser ablation of Al2O3 applying simultaneous argon plasma treatment at atmospheric pressure,” J. Ceram. Sci. Technol. 4, 19–24 (2013).
[Crossref]

Peters, M.

C. Leyens and M. Peters, Titanium and Titanium Alloys (Wiley, 2003).

Pou, J.

M. Boutinguiza, J. del Val, A. Riveiro, F. Lusguiños, F. Quintero, R. Comesaña, and J. Pou, “Synthesis of titanium oxide nanoparticles by ytterbium fiber laser ablation,” Phys. Procedia 41, 787–793 (2013).
[Crossref]

Quintero, F.

M. Boutinguiza, J. del Val, A. Riveiro, F. Lusguiños, F. Quintero, R. Comesaña, and J. Pou, “Synthesis of titanium oxide nanoparticles by ytterbium fiber laser ablation,” Phys. Procedia 41, 787–793 (2013).
[Crossref]

Rack, H. J.

M. Long and H. J. Rack, “Titanium alloys in total joint replacement—a materials science perspective,” Biomaterials 19, 1621–1639 (1998).
[Crossref]

Rahbar, N.

A. Y. Fasasi, S. Mwenifumbo, N. Rahbar, J. Chen, M. Li, A. C. Beye, C. B. Arnold, and W. O. Soboyejo, “Nano-second UV laser processed micro-grooves on Ti6Al4 V for biomedical applications,” Mater. Sci. Eng., C 29, 5–13 (2009).
[Crossref]

Rahman, Q.

F. Afaq, P. Abidi, R. Martin, and Q. Rahman, “Cytotoxicity, pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide,” J. Appl. Toxicol. 18, 307–312 (1998).
[Crossref]

Redaelli, R.

M. Trtica, D. Batani, R. Redaelli, J. Limpouch, V. Kmetik, J. Ciganovic, J. Stasic, B. Gakovic, and M. Momcilovic, “Titanium surface modification using femtosecond laser with 1013–1015 W/cm2 intensity in vacuum,” Laser Part. Beams 31, 29–36 (2013).
[Crossref]

Reed, K. L.

D. B. Warheit, T. R. Webb, K. L. Reed, S. Frerichs, and C. M. Sayes, “Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties,” Toxicology 230, 90–104 (2007).
[Crossref]

Richmonds, C.

C. Richmonds and R. M. Sankaran, “Plasma-liquid electrochemistry: rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations,” Appl. Phys. Lett. 93, 131501 (2008).
[Crossref]

Riveiro, A.

M. Boutinguiza, J. del Val, A. Riveiro, F. Lusguiños, F. Quintero, R. Comesaña, and J. Pou, “Synthesis of titanium oxide nanoparticles by ytterbium fiber laser ablation,” Phys. Procedia 41, 787–793 (2013).
[Crossref]

Robbie, K.

C. Buzea, I. I. Pacheco, and K. Robbie, “Nanomaterials and nanoparticles: sources and toxicity,” Biointerphases 2, MR17–MR71 (2007).
[Crossref]

Roux, S.

C. Gerhard, S. Roux, F. Peters, S. Brückner, S. Wieneke, and W. Viöl, “Hybrid laser ablation of Al2O3 applying simultaneous argon plasma treatment at atmospheric pressure,” J. Ceram. Sci. Technol. 4, 19–24 (2013).
[Crossref]

C. Gerhard, S. Roux, S. Brueckner, S. Wieneke, and W. Viöl, “Atmospheric pressure argon plasma-assisted enhancement of laser ablation of aluminium,” Appl. Phys. A 108, 107–112 (2012).
[Crossref]

C. Gerhard, S. Roux, S. Brueckner, S. Wieneke, and W. Viöl, “Low-temperature atmospheric pressure argon plasma treatment and hybrid laser-plasma ablation of barite crown and heavy flint glass,” Appl. Opt. 51, 3847–3852 (2012).
[Crossref]

Sankaran, R. M.

C. Richmonds and R. M. Sankaran, “Plasma-liquid electrochemistry: rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations,” Appl. Phys. Lett. 93, 131501 (2008).
[Crossref]

Sapkota, D.

D. Sapkota, Y. Li, O. R. Musaev, J. M. Wrobel, and M. B. Kruger, “Effect of electric fields on tin nanoparticles prepared by laser ablation in water,” J. Laser Appl. 29, 12002 (2017).
[Crossref]

Sayes, C. M.

D. B. Warheit, T. R. Webb, K. L. Reed, S. Frerichs, and C. M. Sayes, “Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties,” Toxicology 230, 90–104 (2007).
[Crossref]

Schmidt, M. J. J.

A. Abdolvand, S. Z. Khan, Y. Yuan, P. L. Crouse, M. J. J. Schmidt, and M. Sharp, “Generation of titanium-oxide nanoparticles in liquid using a high-power, high-brightness continuous-wave fiber laser,” Appl. Phys. A 91, 365–368 (2008).
[Crossref]

Seleznev, L. V.

A. Ionin, S. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Y. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10, 56004 (2013).
[Crossref]

E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface,” J. Exp. Theor. Phys. Lett. 90, 107–110 (2009).
[Crossref]

Semaltianos, N. G.

N. G. Semaltianos, S. Logothetidis, N. Frangis, I. Tsiaoussis, W. Perrie, G. Dearden, and K. G. Watkins, “Laser ablation in water: a route to synthesize nanoparticles of titanium monoxide. A route to synthesize nanoparticles of titanium monoxide,” Chem. Phys. Lett. 496, 113–116 (2010).
[Crossref]

Serkov, A. A.

A. A. Serkov, E. V. Barmina, G. A. Shafeev, and V. V. Voronov, “Laser ablation of titanium in liquid in external electric field,” Appl. Surf. Sci. 348, 16–21 (2015).
[Crossref]

Shafeev, G. A.

A. A. Serkov, E. V. Barmina, G. A. Shafeev, and V. V. Voronov, “Laser ablation of titanium in liquid in external electric field,” Appl. Surf. Sci. 348, 16–21 (2015).
[Crossref]

Sharp, M.

A. Abdolvand, S. Z. Khan, Y. Yuan, P. L. Crouse, M. J. J. Schmidt, and M. Sharp, “Generation of titanium-oxide nanoparticles in liquid using a high-power, high-brightness continuous-wave fiber laser,” Appl. Phys. A 91, 365–368 (2008).
[Crossref]

Shi, M.-D.

P.-S. Liu, W.-P. Cai, L.-X. Wan, M.-D. Shi, X.-D. Luo, and W.-P. Jing, “Fabrication and characteristics of rutile TiO2 nanoparticles induced by laser ablation,” Trans. Nonferrous Met. Soc. China 19, 737–747 (2009).
[Crossref]

Sinitsyn, D. V.

A. Ionin, S. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Y. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10, 56004 (2013).
[Crossref]

E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface,” J. Exp. Theor. Phys. Lett. 90, 107–110 (2009).
[Crossref]

Soboyejo, W. O.

A. Y. Fasasi, S. Mwenifumbo, N. Rahbar, J. Chen, M. Li, A. C. Beye, C. B. Arnold, and W. O. Soboyejo, “Nano-second UV laser processed micro-grooves on Ti6Al4 V for biomedical applications,” Mater. Sci. Eng., C 29, 5–13 (2009).
[Crossref]

Stasic, J.

M. Trtica, D. Batani, R. Redaelli, J. Limpouch, V. Kmetik, J. Ciganovic, J. Stasic, B. Gakovic, and M. Momcilovic, “Titanium surface modification using femtosecond laser with 1013–1015 W/cm2 intensity in vacuum,” Laser Part. Beams 31, 29–36 (2013).
[Crossref]

Stephen, A.

A. Stephen, “Mechanisms and applications of laser chemical machining,” Phys. Procedia 12, 261–267 (2011).
[Crossref]

Tangwarodomnukun, V.

V. Tangwarodomnukun, P. Likhitangsuwat, O. Tevinpibanphan, and C. Dumkum, “Laser ablation of titanium alloy under a thin and flowing water layer,” Int. J. Mach. Tools Manuf. 89, 14–28 (2015).
[Crossref]

Tazebay, U. H.

Tevinpibanphan, O.

V. Tangwarodomnukun, P. Likhitangsuwat, O. Tevinpibanphan, and C. Dumkum, “Laser ablation of titanium alloy under a thin and flowing water layer,” Int. J. Mach. Tools Manuf. 89, 14–28 (2015).
[Crossref]

Tie, S.-L.

H. Li, X.-F. Li, C.-Y. Zhang, S.-L. Tie, and S. Lan, “Narrow titanium oxide nanowires induced by femtosecond laser pulses on a titanium surface,” Appl. Surf. Sci. 396, 221–225 (2016).
[Crossref]

Trtica, M.

M. Trtica, D. Batani, R. Redaelli, J. Limpouch, V. Kmetik, J. Ciganovic, J. Stasic, B. Gakovic, and M. Momcilovic, “Titanium surface modification using femtosecond laser with 1013–1015 W/cm2 intensity in vacuum,” Laser Part. Beams 31, 29–36 (2013).
[Crossref]

Tse, S. D.

H. Zhao, X. Liu, and S. D. Tse, “Control of nanoparticle size and agglomeration through electric-field-enhanced flame synthesis,” J. Nanopart. Res. 10, 907–923 (2008).
[Crossref]

Tsiaoussis, I.

N. G. Semaltianos, S. Logothetidis, N. Frangis, I. Tsiaoussis, W. Perrie, G. Dearden, and K. G. Watkins, “Laser ablation in water: a route to synthesize nanoparticles of titanium monoxide. A route to synthesize nanoparticles of titanium monoxide,” Chem. Phys. Lett. 496, 113–116 (2010).
[Crossref]

Valivev, R.

C. N. Elias, J. H. C. Lima, R. Valivev, and M. A. Meyers, “Biomedical applications of titanium and its alloys,” JOM-J. Miner. Met. Mater. Soc. 60, 46–49 (2008).
[Crossref]

Vergari, C.

E. Giorgetti, M. Muniz Miranda, S. Caporali, P. Canton, P. Marsili, C. Vergari, and F. Giammanco, “TiO2 nanoparticles obtained by laser ablation in water: influence of pulse energy and duration on the crystalline phase,” J. Alloys Compd. 643, S75–S79 (2015).
[Crossref]

Viöl, W.

J. Hoffmeister, S. Brückner, C. Gerhard, S. Wieneke, and W. Viöl, “Impact of the thermal lens effect in atmospheric pressure DBD-plasma columns on coaxially guided laser beams,” Plasma Sources Sci. Technol. 23, 064008 (2014).
[Crossref]

C. Gerhard, T. Weihs, A. Luca, S. Wieneke, and W. Viöl, “Polishing of optical media by dielectric barrier discharge inert gas plasma at atmospheric pressure,” J. Eur. Opt. Soc. 8, 13081 (2013).
[Crossref]

C. Gerhard, S. Roux, F. Peters, S. Brückner, S. Wieneke, and W. Viöl, “Hybrid laser ablation of Al2O3 applying simultaneous argon plasma treatment at atmospheric pressure,” J. Ceram. Sci. Technol. 4, 19–24 (2013).
[Crossref]

C. Gerhard, S. Roux, S. Brueckner, S. Wieneke, and W. Viöl, “Atmospheric pressure argon plasma-assisted enhancement of laser ablation of aluminium,” Appl. Phys. A 108, 107–112 (2012).
[Crossref]

C. Gerhard, S. Roux, S. Brueckner, S. Wieneke, and W. Viöl, “Low-temperature atmospheric pressure argon plasma treatment and hybrid laser-plasma ablation of barite crown and heavy flint glass,” Appl. Opt. 51, 3847–3852 (2012).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253, 7272–7280 (2007).
[Crossref]

Voronov, V. V.

A. A. Serkov, E. V. Barmina, G. A. Shafeev, and V. V. Voronov, “Laser ablation of titanium in liquid in external electric field,” Appl. Surf. Sci. 348, 16–21 (2015).
[Crossref]

Wan, L.-X.

P.-S. Liu, W.-P. Cai, L.-X. Wan, M.-D. Shi, X.-D. Luo, and W.-P. Jing, “Fabrication and characteristics of rutile TiO2 nanoparticles induced by laser ablation,” Trans. Nonferrous Met. Soc. China 19, 737–747 (2009).
[Crossref]

Warheit, D. B.

D. B. Warheit, T. R. Webb, K. L. Reed, S. Frerichs, and C. M. Sayes, “Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties,” Toxicology 230, 90–104 (2007).
[Crossref]

Watkins, K. G.

N. G. Semaltianos, S. Logothetidis, N. Frangis, I. Tsiaoussis, W. Perrie, G. Dearden, and K. G. Watkins, “Laser ablation in water: a route to synthesize nanoparticles of titanium monoxide. A route to synthesize nanoparticles of titanium monoxide,” Chem. Phys. Lett. 496, 113–116 (2010).
[Crossref]

Webb, T. R.

D. B. Warheit, T. R. Webb, K. L. Reed, S. Frerichs, and C. M. Sayes, “Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties,” Toxicology 230, 90–104 (2007).
[Crossref]

Weihs, T.

C. Gerhard, T. Weihs, A. Luca, S. Wieneke, and W. Viöl, “Polishing of optical media by dielectric barrier discharge inert gas plasma at atmospheric pressure,” J. Eur. Opt. Soc. 8, 13081 (2013).
[Crossref]

Wieneke, S.

J. Hoffmeister, S. Brückner, C. Gerhard, S. Wieneke, and W. Viöl, “Impact of the thermal lens effect in atmospheric pressure DBD-plasma columns on coaxially guided laser beams,” Plasma Sources Sci. Technol. 23, 064008 (2014).
[Crossref]

C. Gerhard, T. Weihs, A. Luca, S. Wieneke, and W. Viöl, “Polishing of optical media by dielectric barrier discharge inert gas plasma at atmospheric pressure,” J. Eur. Opt. Soc. 8, 13081 (2013).
[Crossref]

C. Gerhard, S. Roux, F. Peters, S. Brückner, S. Wieneke, and W. Viöl, “Hybrid laser ablation of Al2O3 applying simultaneous argon plasma treatment at atmospheric pressure,” J. Ceram. Sci. Technol. 4, 19–24 (2013).
[Crossref]

C. Gerhard, S. Roux, S. Brueckner, S. Wieneke, and W. Viöl, “Atmospheric pressure argon plasma-assisted enhancement of laser ablation of aluminium,” Appl. Phys. A 108, 107–112 (2012).
[Crossref]

C. Gerhard, S. Roux, S. Brueckner, S. Wieneke, and W. Viöl, “Low-temperature atmospheric pressure argon plasma treatment and hybrid laser-plasma ablation of barite crown and heavy flint glass,” Appl. Opt. 51, 3847–3852 (2012).
[Crossref]

Wrobel, J. M.

D. Sapkota, Y. Li, O. R. Musaev, J. M. Wrobel, and M. B. Kruger, “Effect of electric fields on tin nanoparticles prepared by laser ablation in water,” J. Laser Appl. 29, 12002 (2017).
[Crossref]

Yavas, S.

Yoshiasa, A.

L. Chen, T. Mashimo, E. Omurzak, H. Okudera, C. Iwamoto, and A. Yoshiasa, “Pure tetragonal ZrO2 nanoparticles synthesized by pulsed plasma in liquid,” J. Phys. Chem. C 115, 9370–9375 (2011).
[Crossref]

Yuan, Y.

A. Abdolvand, S. Z. Khan, Y. Yuan, P. L. Crouse, M. J. J. Schmidt, and M. Sharp, “Generation of titanium-oxide nanoparticles in liquid using a high-power, high-brightness continuous-wave fiber laser,” Appl. Phys. A 91, 365–368 (2008).
[Crossref]

Zhang, C.-Y.

H. Li, X.-F. Li, C.-Y. Zhang, S.-L. Tie, and S. Lan, “Narrow titanium oxide nanowires induced by femtosecond laser pulses on a titanium surface,” Appl. Surf. Sci. 396, 221–225 (2016).
[Crossref]

Zhao, H.

H. Zhao, X. Liu, and S. D. Tse, “Control of nanoparticle size and agglomeration through electric-field-enhanced flame synthesis,” J. Nanopart. Res. 10, 907–923 (2008).
[Crossref]

Am. J. Respir. Cell Mol. Biol. (1)

J. Ferin, G. Oberdorster, and D. P. Penney, “Pulmonary retention of ultrafine and fine particles in rats,” Am. J. Respir. Cell Mol. Biol. 6, 535–542 (1992).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (3)

C. Gerhard, S. Roux, S. Brueckner, S. Wieneke, and W. Viöl, “Atmospheric pressure argon plasma-assisted enhancement of laser ablation of aluminium,” Appl. Phys. A 108, 107–112 (2012).
[Crossref]

A. Abdolvand, S. Z. Khan, Y. Yuan, P. L. Crouse, M. J. J. Schmidt, and M. Sharp, “Generation of titanium-oxide nanoparticles in liquid using a high-power, high-brightness continuous-wave fiber laser,” Appl. Phys. A 91, 365–368 (2008).
[Crossref]

A. Hamad, L. Li, and Z. Liu, “A comparison of the characteristics of nanosecond, picosecond and femtosecond lasers generated Ag, TiO2 and Au nanoparticles in deionised water,” Appl. Phys. A 120, 1247–1260 (2015).
[Crossref]

Appl. Phys. Lett. (2)

B. M. Obradović, S. S. Ivković, and M. M. Kuraica, “Spectroscopic measurement of electric field in dielectric barrier discharge in helium,” Appl. Phys. Lett. 92, 191501 (2008).
[Crossref]

C. Richmonds and R. M. Sankaran, “Plasma-liquid electrochemistry: rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations,” Appl. Phys. Lett. 93, 131501 (2008).
[Crossref]

Appl. Surf. Sci. (3)

H. Li, X.-F. Li, C.-Y. Zhang, S.-L. Tie, and S. Lan, “Narrow titanium oxide nanowires induced by femtosecond laser pulses on a titanium surface,” Appl. Surf. Sci. 396, 221–225 (2016).
[Crossref]

A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253, 7272–7280 (2007).
[Crossref]

A. A. Serkov, E. V. Barmina, G. A. Shafeev, and V. V. Voronov, “Laser ablation of titanium in liquid in external electric field,” Appl. Surf. Sci. 348, 16–21 (2015).
[Crossref]

Biointerphases (1)

C. Buzea, I. I. Pacheco, and K. Robbie, “Nanomaterials and nanoparticles: sources and toxicity,” Biointerphases 2, MR17–MR71 (2007).
[Crossref]

Biomaterials (1)

M. Long and H. J. Rack, “Titanium alloys in total joint replacement—a materials science perspective,” Biomaterials 19, 1621–1639 (1998).
[Crossref]

Chem. Phys. Lett. (1)

N. G. Semaltianos, S. Logothetidis, N. Frangis, I. Tsiaoussis, W. Perrie, G. Dearden, and K. G. Watkins, “Laser ablation in water: a route to synthesize nanoparticles of titanium monoxide. A route to synthesize nanoparticles of titanium monoxide,” Chem. Phys. Lett. 496, 113–116 (2010).
[Crossref]

Int. Arch. Occup. Environ. Health (1)

G. Oberdoerster, “Pulmonary effects of inhaled ultrafine particles,” Int. Arch. Occup. Environ. Health 74, 1–8 (2000).

Int. J. Mach. Tools Manuf. (1)

V. Tangwarodomnukun, P. Likhitangsuwat, O. Tevinpibanphan, and C. Dumkum, “Laser ablation of titanium alloy under a thin and flowing water layer,” Int. J. Mach. Tools Manuf. 89, 14–28 (2015).
[Crossref]

J. Alloys Compd. (1)

E. Giorgetti, M. Muniz Miranda, S. Caporali, P. Canton, P. Marsili, C. Vergari, and F. Giammanco, “TiO2 nanoparticles obtained by laser ablation in water: influence of pulse energy and duration on the crystalline phase,” J. Alloys Compd. 643, S75–S79 (2015).
[Crossref]

J. Appl. Toxicol. (1)

F. Afaq, P. Abidi, R. Martin, and Q. Rahman, “Cytotoxicity, pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide,” J. Appl. Toxicol. 18, 307–312 (1998).
[Crossref]

J. Ceram. Sci. Technol. (1)

C. Gerhard, S. Roux, F. Peters, S. Brückner, S. Wieneke, and W. Viöl, “Hybrid laser ablation of Al2O3 applying simultaneous argon plasma treatment at atmospheric pressure,” J. Ceram. Sci. Technol. 4, 19–24 (2013).
[Crossref]

J. Eur. Opt. Soc. (1)

C. Gerhard, T. Weihs, A. Luca, S. Wieneke, and W. Viöl, “Polishing of optical media by dielectric barrier discharge inert gas plasma at atmospheric pressure,” J. Eur. Opt. Soc. 8, 13081 (2013).
[Crossref]

J. Exp. Theor. Phys. Lett. (1)

E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface,” J. Exp. Theor. Phys. Lett. 90, 107–110 (2009).
[Crossref]

J. Laser Appl. (1)

D. Sapkota, Y. Li, O. R. Musaev, J. M. Wrobel, and M. B. Kruger, “Effect of electric fields on tin nanoparticles prepared by laser ablation in water,” J. Laser Appl. 29, 12002 (2017).
[Crossref]

J. Nanopart. Res. (1)

H. Zhao, X. Liu, and S. D. Tse, “Control of nanoparticle size and agglomeration through electric-field-enhanced flame synthesis,” J. Nanopart. Res. 10, 907–923 (2008).
[Crossref]

J. Phys. Chem. B (1)

J. S. Golightly and A. W. Castleman, “Analysis of titanium nanoparticles created by laser irradiation under liquid environments,” J. Phys. Chem. B 110, 19979–19984 (2006).
[Crossref]

J. Phys. Chem. C (1)

L. Chen, T. Mashimo, E. Omurzak, H. Okudera, C. Iwamoto, and A. Yoshiasa, “Pure tetragonal ZrO2 nanoparticles synthesized by pulsed plasma in liquid,” J. Phys. Chem. C 115, 9370–9375 (2011).
[Crossref]

JOM-J. Miner. Met. Mater. Soc. (1)

C. N. Elias, J. H. C. Lima, R. Valivev, and M. A. Meyers, “Biomedical applications of titanium and its alloys,” JOM-J. Miner. Met. Mater. Soc. 60, 46–49 (2008).
[Crossref]

Laser Part. Beams (1)

M. Trtica, D. Batani, R. Redaelli, J. Limpouch, V. Kmetik, J. Ciganovic, J. Stasic, B. Gakovic, and M. Momcilovic, “Titanium surface modification using femtosecond laser with 1013–1015 W/cm2 intensity in vacuum,” Laser Part. Beams 31, 29–36 (2013).
[Crossref]

Laser Phys. Lett. (1)

A. Ionin, S. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Y. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10, 56004 (2013).
[Crossref]

Mater. Sci. Eng., C (1)

A. Y. Fasasi, S. Mwenifumbo, N. Rahbar, J. Chen, M. Li, A. C. Beye, C. B. Arnold, and W. O. Soboyejo, “Nano-second UV laser processed micro-grooves on Ti6Al4 V for biomedical applications,” Mater. Sci. Eng., C 29, 5–13 (2009).
[Crossref]

Nanotechnology (1)

J. Patel, L. Němcová, P. Maguire, W. G. Graham, and D. Mariotti, “Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry,” Nanotechnology 24, 245604 (2013).
[Crossref]

Opt. Express (1)

Phys. Procedia (2)

A. Stephen, “Mechanisms and applications of laser chemical machining,” Phys. Procedia 12, 261–267 (2011).
[Crossref]

M. Boutinguiza, J. del Val, A. Riveiro, F. Lusguiños, F. Quintero, R. Comesaña, and J. Pou, “Synthesis of titanium oxide nanoparticles by ytterbium fiber laser ablation,” Phys. Procedia 41, 787–793 (2013).
[Crossref]

Plasma Sources Sci. Technol. (1)

J. Hoffmeister, S. Brückner, C. Gerhard, S. Wieneke, and W. Viöl, “Impact of the thermal lens effect in atmospheric pressure DBD-plasma columns on coaxially guided laser beams,” Plasma Sources Sci. Technol. 23, 064008 (2014).
[Crossref]

Toxicology (1)

D. B. Warheit, T. R. Webb, K. L. Reed, S. Frerichs, and C. M. Sayes, “Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties,” Toxicology 230, 90–104 (2007).
[Crossref]

Trans. Nonferrous Met. Soc. China (1)

P.-S. Liu, W.-P. Cai, L.-X. Wan, M.-D. Shi, X.-D. Luo, and W.-P. Jing, “Fabrication and characteristics of rutile TiO2 nanoparticles induced by laser ablation,” Trans. Nonferrous Met. Soc. China 19, 737–747 (2009).
[Crossref]

Other (3)

W. Waidelich, ed., Laser in der Technik/Laser in Engineering (Springer, 1992).

H. W. Bergmann and R. Kupfer, “Werkstoffkundliche Aspekte des Laserstrahlschneidens von Blechwerkstoffen mit einem Nd: YAG-Laser,” in Laser in der Technik/Laser in Engineering, W. Waldenich, ed. (Springer, 1992), p. 401.

C. Leyens and M. Peters, Titanium and Titanium Alloys (Wiley, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Experimental setup for D -DBD plasma-assisted picosecond laser ablation of titanium and collection of generated particles.
Fig. 2.
Fig. 2. Normalized ablated (a) and particle (b) volume versus applied laser dose for pure laser and plasma-assisted ablation at a fixed distance between the intake port of the particle counter and the ablation spot of 10 mm.
Fig. 3.
Fig. 3. 3D view (top) and cross section (bottom) of holes generated by pure laser ablation (a) and plasma-assisted laser ablation (b) at the maximum applied laser dose of 8.73    kJ / mm 2 .
Fig. 4.
Fig. 4. Plasma-induced increase of the number of particles expressed by the ratio LP / L (detected number of particles for plasma-assisted ablation divided by the detected number of particles as measured for pure laser ablation) versus applied laser dose at a fixed distance between the intake port of the particle counter and the ablation spot of 10 mm for three class sizes (nano, micro, and full range; for definition of particle sizes, see text).
Fig. 5.
Fig. 5. Number of particles versus distance between the intake port of the particle counter and the ablation spot for pure laser and plasma-assisted ablation.
Fig. 6.
Fig. 6. Number of particles versus particle diameter as detected for the minimum applied laser fluence of 0.7    kJ / mm 2 (a) and the maximum of 8.73    kJ / mm 2 and (b) at a fixed distance between the intake port of the particle counter and the ablation spot of 10 mm.
Fig. 7.
Fig. 7. Plasma-induced increase in number of particles expressed by the ratio LP / L (detected number of particles for plasma-assisted ablation divided by the detected number of particles as measured for pure laser ablation) versus applied laser dose at a fixed distance between the intake port of the particle counter and the ablation spot of 10 mm for three essential particle diameters.

Tables (1)

Tables Icon

Table 1. Ablated Volume V a And Particle Volume V p for Pure Laser Ablation ( L ) and Plasma-Assisted Laser Ablation (LP) for the Five Different Applied Laser Doses D a

Metrics