Abstract

A surface plasmon resonance (SPR) sensor based on D-shaped microstructured optical fiber (MOF) is proposed to realize the simultaneous measurement of refractive index (RI) and temperature. The D-shaped flat surface coated with a gold layer is in direct contact with analyte as a sensing channel of RI, and one of the air holes near the fiber core is filled with chloroform to detect temperature. Two separate channels and birefringence caused by the asymmetric structure can distinguish the variations of RI and temperature independently, thus completely solving the cross-sensitivity problem. This is the first time to realize the simultaneous measurement of multiple parameters without matrix equations, to the best of our knowledge. Results show that the y-polarized peak supported by channel I only shifts with RI variation and is unaffected by the temperature floating. Similarly, the x-polarized peak supported by channel II is only influenced by the change of temperature in the external environment. The effect of gold layer thickness is investigated numerically, and the sensor sensitivity is identified both in wavelength and amplitude interrogations. This work is very helpful for the design and implementation of a highly sensitive, real-time, and distributed SPR sensor for multi-parameter measurement applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of a SPR based refractive index sensor using a single mode fiber with a large D shaped microfluidic channel

A. K. Pathak, V. K. Singh, S. Ghosh, and B. M. A. Rahman
OSA Continuum 2(11) 3008-3018 (2019)

D-shaped photonic crystal fiber plasmonic refractive index sensor based on gold grating

Junjie Lu, Yan Li, Yanhua Han, Yi Liu, and Jianmin Gao
Appl. Opt. 57(19) 5268-5272 (2018)

Simultaneous measurement of refractive index and temperature for prism-based surface plasmon resonance sensors

Wei Luo, Rujing Wang, Hairong Li, Jieting Kou, Xinhua Zeng, He Huang, Xiaobo Hu, and Wei Huang
Opt. Express 27(2) 576-589 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription