Abstract

We propose and experimentally demonstrate lensless complex amplitude image retrieval through a visually opaque scattering medium from spatially fluctuating fields using intensity measurement and a phase-retrieval algorithm. The complex amplitude information of the hidden object is encoded in the form of a real and nonnegative amplitude function represented as an interference pattern. A single charge coupled device (CCD) image of the scattered light collected through a visually opaque optical diffuser contains enough information to digitally regenerate the interference pattern. Furthermore, a lensless configuration is implemented which eliminates any possible aberration effects associated with optical components, and this further has promising applications where the use of imaging optics is not feasible. Experimental results for the recovery of complex fields corresponding to optical vortices of two different topological charges are presented.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Holographic imaging through a scattering layer using speckle interferometry

Atul S. Somkuwar, Bhargab Das, R. V. Vinu, YongKeun Park, and Rakesh Kumar Singh
J. Opt. Soc. Am. A 34(8) 1392-1399 (2017)

Lensless imaging through thin diffusive media

Walter Harm, Clemens Roider, Alexander Jesacher, Stefan Bernet, and Monika Ritsch-Marte
Opt. Express 22(18) 22146-22156 (2014)

Imaging objects through scattering layers and around corners by retrieval of the scattered point spread function

Xiaoqing Xu, Xiangsheng Xie, Hexiang He, Huichang Zhuang, Jianying Zhou, Abhilash Thendiyammal, and Allard P Mosk
Opt. Express 25(26) 32829-32840 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription