Abstract

Due to the similarity of Brillouin optical time domain analyzer (BOTDA) signals, image denoising could be utilized to remove the noise. However, the performance can be much degraded due to inaccurate noise level estimation. By numerical and experimental study, we compare the noise level estimation of three different methods for BOTDA: calculating the standard deviation (STD) of the measurements, a filter-based estimation algorithm, and a patch-based estimation algorithm proposed in this paper, which selects weak textured patches of BOTDA signal and then estimates noise level using principal component analysis (W-PCA). The results show that W-PCA and the mean of STD can accurately estimate the noise level, while the filter-based method overestimates the noise level. Nevertheless, for BOTDA with distributed amplification, the STD has huge fluctuation along the length, while the W-PCA is relatively robust for its global consideration. Experimental results of an ultra-long-distance BOTDA prove that the non-local means denoising processing based on W-PCA effectively removes the noise of a sensing system without signal distortion.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Brillouin optical time domain analyzer sensors assisted by advanced image denoising techniques

Huan Wu, Liang Wang, Zhiyong Zhao, Nan Guo, Chester Shu, and Chao Lu
Opt. Express 26(5) 5126-5139 (2018)

Speckle denoising by variant nonlocal means methods

Yassine Tounsi, Manoj Kumar, Abdelkrim Nassim, Fernando Mendoza-Santoyo, and Osamu Matoba
Appl. Opt. 58(26) 7110-7120 (2019)

High-performance optical chirp chain BOTDA by using a pattern recognition algorithm and the differential pulse-width pair technique

Benzhang Wang, Baohua Fan, Dengwang Zhou, Chao Pang, Yue Li, Dexin Ba, and Yongkang Dong
Photon. Res. 7(6) 652-658 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription