Abstract

While photoacoustic computed tomography (PACT) is generally built with planar transducers of finite size, most current reconstruction algorithms assume the transducer to be an ideal point, which leads to a spinning blur in the consequently obtained PACT images due to the model mismatch. In this work, we put forward an improved back-projection method that factors in the geometry of the transducers to improve the tangential resolution for the reconstruction of 2D circular-scanning-based photoacoustic tomography. Extensive simulations and experiments were carried out to study the adaptability and stability of the proposed method. Results show that this method can effectively restore the tangential distortion of the PACT image for both simulated and experimental data. Results indicated that the improvement of the tangential resolution is more obvious for transducers with larger size. We also demonstrated the application of this method to transducers other than planar, and results show that the reconstructed image quality can be significantly affected by the shape and position of the transducers used. This study may help to guide the selection of transducer and design of scanning strategy in PACT.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Impact of sensor apodization on the tangential resolution in photoacoustic tomography

Pankaj Warbal, Manojit Pramanik, and Ratan K. Saha
J. Opt. Soc. Am. A 36(2) 245-252 (2019)

Model-based correction of finite aperture effect in photoacoustic tomography

Meng-Lin Li, Yi-Chieh Tseng, and Chung-Chih Cheng
Opt. Express 18(25) 26285-26292 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription