Abstract

In this paper, the solar spectrum matching in the visible range of 380–780 nm with white organic light-emitting diode (OLED) and monochromatic light-emitting diodes (LEDs) is investigated. The correlation index (R2) is used to evaluate the difference between the matching spectrum and the solar spectrum. The optimal combination is obtained by the least squares method. We also perform subtraction experiments to find the optimal combination. We utilize a common white OLED device design and just change the species of monochromatic LEDs used. We report and evaluate different degrees of matching effects. The results show that the correlation index of the best combination can reach 94.09% with white OLED and 36 monochromatic LEDs. We define three levels of performance as an evaluation system in accordance with the matching effect. The level is excellent with an R2 above 90.14%. The good level is from 86.65% to 58.28%. From 42.08% to 33.06% is the reasonable level. Compared with other methods, using white OLED combined with monochromatic LEDs achieves the best solar spectrum matching effect. The results can be applied to different requirements of engineering practice.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimization of LED light spectrum to enhance colorfulness of illuminated objects with white light constraints

Haining Wu, Jianfei Dong, Gaojin Qi, and Guoqi Zhang
J. Opt. Soc. Am. A 32(7) 1262-1270 (2015)

Excellent color rendering indexes of multi-package white LEDs

Ji Hye Oh, Su Ji Yang, Yeon-Goog Sung, and Y. R. Do
Opt. Express 20(18) 20276-20285 (2012)

Photometric optimization and comparison of hybrid white LEDs for mesopic road lighting

Chuanwen Zhang, Licai Xiao, Ping Zhong, and Guoxing He
Appl. Opt. 57(16) 4665-4671 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription