Abstract

A thin-film-based optical fiber Fabry–Perot interferometer that consists of ZrO2 and SiO2 porous thin films is designed and fabricated by electron beam physical vapor deposition. Since the SiO2 porous thin film has the capability of water adsorption, the proposed Fabry–Perot interferometer is appropriate to detect humidity. Experimental results show that the prepared sensor has a humidity detection range from 0.06% RH to 70% RH. A cycling test shows that the humidity sensor has a responding or recover time of 4 s and good repeatability among different humidity environments. Especially, the proposed humidity sensor is insensitive to temperature variation and suitable for the detection of low relative humidity.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dielectric multilayer-based fiber optic sensor enabling simultaneous measurement of humidity and temperature

Minghong Yang, Weijing Xie, Yutang Dai, Dongwen Lee, Jixiang Dai, Yi Zhang, and Zhi Zhuang
Opt. Express 22(10) 11892-11899 (2014)

Tungsten disulfide (WS2) based all-fiber-optic humidity sensor

Yunhan Luo, Chaoying Chen, Kai Xia, Shuihua Peng, Heyuan Guan, Jieyuan Tang, Huiui Lu, Jianhui Yu, Jun Zhang, Yi Xiao, and Zhe Chen
Opt. Express 24(8) 8956-8966 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription